UNIVERSITI TEKNOLOGI MARA

THERMOS-PHYSICAL PROPERTIES AND HEAT TRANSFER CHARACTERISTICS OF WATER MWCNT-FE₃O₄ BASED HYBRID NANOFLUID AS A COOLANT FOR CAR RADIATOR

FATEN FAZRIN BINTI ABDULLAH @ GHAZALI

Dissertation submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

July 2019

ABSTRACT

Energy management in a car radiator is important to ensure efficient operation of automobile engines. The cooling system of radiator traditionally use water and antifreezing agent as the coolant fluid that passes through the engine block but they have some limitations due to the fact these medium exhibit relatively low thermal conductivity compared to nanofluid. Therefore, this study aims to analyze the thermophysical properties of water MWCNT-Fe₃O₄ based hybrid nanofluid in car radiators and to study the effect of different operating parameter on the thermal characteristics of the coolant. A flattened tube was simulated in this study. The water based hybrid nanofluid MWCNT-Fe₃O₄ was used in this study and the concentrations of the nanofluid were varied at 0%, 0.3%, 0.5% and 0.7%. The ratio of the hybrid implemented was 90:10 of MWCNT and Fe₃O₄ respectively. The flow regime is laminar where the Reynold number ranges from 400 to 1000. The highest concentrations of water MWCNT-Fe₃O₄ hybrid nanofluid exhibits the most density, thermal conductivity and viscosity properties, meanwhile have the lowest specific heat capacity. Besides that, there were improvements in the heat transfer performance for the hybrid nanofluid compared to water. For example, at Reynold number 600 and inlet temperature 323K, the heat transfer coefficient for water was 1318.937W/m²K while 0.7% concentration of nanofluid is 1324.258W/m²K. The highest heat transfer performance was achieved when using 0.7% concentration of hybrid nanofluid.

ACKNOWLEDGEMENT

I would like to thank Allah S.W.T for giving me the chance to take part in the Master programme and completing this long journey successfully. My appreciation and thanks go to my supervisor, Dr Ing. Alhassan Salami Tijani for the guidance and advises. His patient and determination in guiding me to succeed is very appreciated.

Special thanks for the Jabatan Perkhidmatan Awam (JPA) for the sponsor during my study because the fee for the MSc is not affordable by me. All the allowances were used for the study. Besides, my gratefulness goes to my colleagues and friends for the assistances to succeed in this project.

Lastly, this thesis is devoted to my beloved family, especially my husband and parents for supporting me through thick and thin. Although the journey of the research was very difficult and required a lot of sacrifice, I have been able to withstand and continue until the end because of them. The responsibility as a mother, wife and student had to be fulfilled at the same time. Alhamdulilah, this victory is achieved with all their help.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS									
AUTHOR'S DECLARATION									
ABSTRACT ACKNOWLEDGEMENT									
					TABLE OF CONTENTS				
LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS									
					LIST OF NOMENCLATURES				
CHAPTER ONE: INTRODUCTION									
1.1	Research Background	1							
1.2	Problem Statement	3							
1.3	Objectives	4							
1.4	Significance of Study	4							
1.5	Scope of Work	5							
CHA	APTER TWO: LITERATURE REVIEW	6							
2.1	Introduction	6							
2.2	Car Radiator Studies	7							
2.3	Nanofluid	10							
2.4	Hybrid Nanofluid	12							
CHA	APTER THREE: RESEARCH METHODOLOGY	19							
3.1	Introduction	19							
3.2	Justification of MWCNT- Fe ₃ O ₄ Hybrid Nanofluid	20							
3.3	Car Radiator Modelling and Drafting	21							
3.4	Simulation	22							
3.5	Model Equation for the Hybrid Nanofluid Physical Properties vi	27							

CHAP	PTER	FOUR:	RESULTS	AND	DISCUS	SION	ON	THE	
THER	MOPH	YSICAL	PROPERTIES	AN	D HE	AT 7	FRAN	SFER	
CHAF	RACTE	RISTICS OF	THE HYBRID	NANOI	LUID			30	
4.1	Validati	ion of Simula	tion					30	
4.2	Grid Ind	dependence 7	Test					31	
4.3	Hybrid	Nanofluid Th	nermophysical Pro	operties				32	
4.4	Heat Transfer Performance of Hybrid Nanofluid						33		
4.5	Pressure	e Drop and F	riction Factor of I	Hybrid ir	ı Coolant			37	
4.6	Simulat	ion Results						37	
СНАР	PTER FI	VE: CONC	LUSIONS AND	RECO	MMENDA	TIONS		40	
REFE	RENCE	S						41	
AUTHOR'S PROFILE								47	