UNIVERSITI TEKNOLOGI MARA

PHYTOCHEMICAL STUDIES OF THE STEM BARKS OF MALLOTUS LEUCODERMIS HOOK F

AIZA SYUHADA BINTI MOHD YUSOFF

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemistry)

Faculty of Applied Sciences

November 2019

ABSTRACT

Mallotus leucodermis, commonly known as 'balek angin bopeng', was traditionally used to alleviate skin problem. Despite its wide application in traditional medicine, no chemical report was found on its bioactive compounds. *Mallotus* species is known to contain bioactive compounds made up of various class of compounds such as flavonoids, terpenoids, benzopyrans, phenolic compounds and phloroglucinol derivatives. Therefore, the stem barks of *M. leucodermis* has been investigated for its phytochemical and biological activities. The aims of this study are to isolate the chemical constituents from the plant, to propose biosynthetic pathway of the new isolated compound and to evaluate the DPPH radical scavenging and cytotoxicity activities for some of the isolated compounds. This phytochemical study involves the isolation, purification, characterization and biological testing of active compounds. Common chromatographic techniques such as column chromatography (CC), vacuum liquid chromatography (VLC), radial chromatography (RC) and preparative thin layer chromatography (PTLC) were used to isolate pure compounds while, the structural elucidation of pure compounds were characterized using common spectroscopic methods (1D, 2D-NMR, UV, IR and MS). Two new compounds malayisobergenin (150) and malayacetophenone (151) along with eight known compounds; bergenin (107), epicatechin (152), hexadecyl ferulate (153), lupeol acetate (54), stigmasterol (119), β -sitosterol (116), germanicol 3-acetate (154), β -amyrin acetate (155) and α amyrin acetate (156) were successfully isolated from this study. Malayacetophenone (151) was proposed via combination of shikimate and mevalonate pathways. The skeleton of acetophenone was formed from the degradation of βhydroxyphenylpropionic acid via shikimate pathway while, 3-propylcyclohexane was derived from the mevalonate pathway. In the DPPH assay, epicatechin (152) and crude extract showed strong radical scavenging activity with IC_{50} values of 6.50 μ M and 3.25 µg/ml, respectively. In the cytotoxicity, malayisobergenin (150) together with β -sitosterol (116) and stigmasterol (119) were demonstrated no cytotoxicity activity against human colorectal carcinoma, HCT116 cancer cell line. The outcomes of this study may contribute to phytochemical database of Mallotus species and the new discovery of bioactive compounds in medicinal plant research.

ACKNOWLEDGEMENT

بسَ مِلْلَهُ الرَّجْنِ الْجَعْمِ الْجَعْمِ الْجَعْمِ

In the name of Allah, The Most Gracious, The Most Merciful. All the praises and thanks be to Allah 'Azza wa Jalla. Alhamdulillah, thank you Allah for giving me chances and opportunity to finish my M.Sc study.

Firstly, I would like to express my gratitude to my supervisor, Dr. Humera Naz, and my co-supervisor, Assoc. Prof. Dr. Norizan Ahmat, for the continuous support of my M.Sc study. They helped me a lot during my lab work and writing this thesis. Without their patience, guidance and supervision, this research can not be successfully completed.

My sincere thanks also goes to my colleagues, Pak Agus, Ola, Kak Nik, Kak Nisa, Kak Ros, Kak Wan, Kak Aisyah, Isna, Hamizah, and Mizan, for helping me a lot and sharing their experiences and knowledges with me throughout my research. Also, a million thanks to Encik Ahmad Kambali and Encik Kadim for their helps during my lab work.

Last but not least, to those who very special, my mother who always pray for my success and my family who always been there in my time of need. Thank you so much. Also, to my husband Muhammad Noor Hisham, who gave continuos moral and financial supports. To my lovely daughter, Aisyah Saafia, thank you for being one of my inspiration and motivation for me to complete my study. Thanks to everyone who has supported me and contributed during my MSc study. May Allah bless them for their kindness.

TABLE OF CONTENTS

	Page	
CONFIRMATION BY PANEL OF EXAMINERS	ii	
AUTHOR'S DECLARATION		
ABSTRACT	iv	
ACKNOWLEDGEMENT	V	
TABLE OF CONTENTS		
LIST OF TABLES		
LIST OF FIGURE	x	
LIST OF ABBREVIATIONS	xiii	
CHAPTER ONE: INTRODUCTION	1	
1.1 Background of Study	1	
1.2 Problem Statement	2	
1.3 Objectives of Study	3	
1.4 Significance of Study	4	
CHAPTER TWO: LITERATURE REVIEW	5	
2.1 Family of Euphorbiaceae	5	
2.2 Genus of Mallotus	5	
2.3 Ethnomedicinal Uses of Mallotus Species	6	
2.4 Chemical Constituents of Mallotus Species	8	
2.4.1 Flavonoids	8	
2.4.2 Terpenoids	13	
2.4.3 Phloroglucinol Derivatives	19	
2.4.4 Phenolic Compounds	21	
2.4.5 Steroids	23	
2.4.6 Benzopyrans	24	
2.4.7 Miscellaneous Compounds	26	
2.5 Biological Activities of Mallotus Species	28	

2.5.1 Antioxidant Activity	28
2.5.2 Antimicrobial activity	29
2.5.3 Anti-inflammatory activity	31
2.5.4 Cytotoxic Activity	32

CH	APTER THREE: RESEARCH METHODOLOGY	35
3.1	Overview	35
3.2	Instrumentation	36
3.3	Chemicals	36
3.4	Plant Materials	36
3.5	Sample Extraction	37
3.6	Isolation and Purification	37
	3.6.1 Spectral Data of Isolated Compounds	40
3.7	Biological Activities	43
	3.7.1 Antioxidant DPPH assays	43
	3.7.2 Cytotoxicity Activity	44

CHAPTER FOUR: PHYTOCHEMICALS OF MALLOTUS LEUCODERMIS,BIOACTIVITIES AND BIOSYNTHESIS STUDIES46

2101101111		
4.1 Chemical	Constituents of M. leucodermis	46
4.1.1	Compound ML1 as Malayisobergenin (150) (New Compound)	48
4.1.2	Compound ML2 as bergenin (107)	54
4.1.3	Compound ML3 as Epicatechin (152)	58
4.1.4	Compound ML4 as hexadecyl ferulate (153)	61
4.1.5	Compound ML5 as lupeol acetate (54)	64
4.1.6	Compound ML6 and ML7 as a Mixture of Stigmasterol (119) and	
	β-sitosterol (116)	68
4.1.7	Compound ML8 as Malayacetophenone (151) (New Compound)	72
4.1.8	Compounds ML9, ML10 and ML11 as Germanicol 3-acetate (154),	
l	β-amyrin acetate (155) and α-amyrin acetate (156)	77
4.2 Biologica	l Activities of The Isolated Compounds	82
4.2.1	Antioxidant Activity	83
4.2.2	Cytotoxicity Activity	85
4.3 Biosynthe	etic Pathway of Isolated Compounds	88