UNIVERSITI TEKNOLOGI MARA

ISOLATION AND MOLECULAR IDENTIFICATION OF BIOSURFACTANT PRODUCING SOIL BACTERIA

NUR AMALINA NIZA BINTI ZAMANI

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Applied Biology)

Faculty of Applied Science

November 2019

ABSTRACT

Biosurfactants are amphiphilic compound, having hydrophilic and hydrophobic moieties enabling them to reduce surface and interfacial tension at the surface. Their unique properties are applied in various industries such as foaming and wetting agents, emulsifiers, detergents and bioremediation. A total of 98 isolates showed biosurfactant activity using hemolytic assay but only 45 isolates demonstrated surfactant activity in drop collapse test and oil spreading assay. All isolates were rodshaped, Gram positive and majority of them were non-endospore former. Then, 21 isolates were chosen based on the diameter of oil spread ranging from 4.0 mm to 20.0 mm and later tested for emulsification index. The biosurfactant produced by both isolates showed high emulsification index (E24) (A1(6), 63.3% and A2(1), 46.7%) and good surfactant capacity. The biosurfactant produced by both bacterial species were identified as surfactin using Fourier Transform Infrared Spectroscopy (FTIR). Only isolates A1(6) and A2(1) showed the highest percentage of emulsification index (E_{24}) and ability to reduce surface tension were used for species identification using 16S rDNA gene sequencing. The 16S rDNA gene was amplified and the amplicon size for both isolates was approximately 1.5 kb. Both isolates were identified as Bacillus cereus C7 and with Bacillus cereus XJU-1. Having the features of high surfactant activity and emulsification index provide the evidence that both species could be a potential biosurfactant producer with proper optimization for the production of biosurfactant.

ACKNOWLEDGEMENT

Alhamdulillah praise and thank you to Allah, the Almighty for giving me the opportunity to start on my master until this long and challenging journey completed successfully. Many valuable experiences and new knowledge were gained throughout this journey in order to complete this research. First and foremost, I would like to express my gratitude and special thanks to my supervisor, PM Dr Tengku Elida Tengku Zainal Mulok. This research would not have been possible without her endless advice, encouragement, guidance and thoughtful ideas. It is impossible for me to finish my thesis without her endless and patient instruction.

Second, my gratitude goes to my co-supervisor, Madam Rohana Binti Mat Nor for her assist, support and encouragement in many ways throughout this research. Next, special thanks to the staff of Universiti Teknologi Mara (UiTM) of Microbiology labs, Encik Zamri and Encik Amri for their cooperation by letting me to do my research in the lab. I also want to express my gratitude to Encik Zamri and Encik Amri for providing all apparatus, chemicals and apparatus needed for the research.

Special appreciation goes to my colleagues and friends for being helpful directly or indirectly in completing my research.

Last appreciation I give to my beloved family especially my parents for their endless love and being supportive during my research. This thesis is dedicated to both of my parents for their determination and hard work for educating me.

TABLE OF CONTENTS

12

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV
LIST OF EQUATIONS	xvii

СНА	PTER	ONE: INTRODUCTION	1
1.1	Resea	rch Background	1
1.2	3		
1.3	Signif	4	
1.4	Objec	5	
1.5	Scope	5	
СНА	PTER '	TWO: LITERATURE REVIEW	6
2.1	Biosu	rfactant	6
	2.1.1	General Characteristics of Biosurfactants	6
	2.1.2	Classification of Biosurfactants	7
		2.1.2.1 Glycolipid	7
		2.1.2.2 Lipopeptides and Lipoproteins	10
		2.1.2.3 Phospholipids and Fatty Acids	11
		2.1.2.4 Polymeric Biosurfactants	11
		2.1.2.5 Particulate Biosurfactants	12

2.1.3 Properties of Biosurfactants

		2.1.3.1 Surface and Interface Activity	12
		2.1.3.2 Temperature and pH Tolerance	13
		2.1.3.3 Biodegradability	13
		2.1.3.4 Low Toxicity	13
	2.1.4	Factors Affecting Biosurfactant Production	14
		2.1.4.1 Carbon Sources	14
		2.1.4.2 Nitrogen Sources	15
		2.1.4.3 Environmental Factors	16
		2.1.4.4 Other Factors	16
2.2	Metab	olic Pathways of Biosurfactant Production	17
2.3	Substra	ates for Biosurfactant Production	20
	2.3.1	Frying Palm Oil	22
2.4	Applic	cations of Biosurfactant	23
	2.4.1	Application of Biosurfactants in Medicine	24
	2.4.2	Application of Biosurfactants in Agriculture	25
	2.4.3	Application of Biosurfactants in Petroleum Industry	26
		2.4.3.1 Extraction of Crude Oil from Reservoirs	27
		2.4.3.2 Transport of Crude Oil by Pipelines	28
		2.4.3.3 Oil Storage Tank Cleaning	29
	2.4.4	Application of Biosurfactants in Food Industries	29
	2.4.5	Application of Biosurfactants in Bioremediation of Toxic Pollutant	s 31
	2.4.6	Application of Biosurfactants in Cosmetics Industry	31
2.5	5 Mang	rove Swamps	32
2.6	5 Auton	nobile Workshop	33
2.7	' Dump	ing Site	34
2.8	Biosur	factant Characterization Using FTIR Analysis	35
СН	IAPTER T	HREE: RESEARCH METHODOLOGY	38
3.1	Materi	als	38
	3.1.1	Chemicals and Reagents	38
3.2	Metho	d	38
	3.2.1	Sample Collection	38
	3.2.2	Preparation of Media and Broth	39
		3.2.2.1 Nutrient Agar (Fulazzaky et al., 2016)	39
		vii	