UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF MINIMAL SURFACE ON MONKEY SADDLE, HANDKERCHIEF AND THOMSEN SURFACES IN TENSIONED FABRIC STRUCTURES

MOHD NASIR BIN ABDUL HADI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Civil Engineering)

Faculty of Civil Engineering

October 2019

ABSTRACT

Tensioned fabric structures are typically designed in the form of equal tensioned surface. New form of minimal surface are Monkey Saddle, Handkerchief and Thomsen surface are applied in TFS. These shapes are very versatile in producing structures with a broad variety of surface shapes. This study are applied the model of Monkey Saddle, Handkerchief and Thomsen surface because this model are not studied by other researchers in TFS. Besides, No other work on the models as idea of TFS have been found. Computational form-finding using nonlinear analysis method and experimental form-finding using soap film have been carried out in this study. Soap film models are developed to verify the computational form-finding results and investigate the possible form of uniform stress surfaces of Monkey Saddle, Handkerchief surface and Thomsen surface. The objective of this study is to determine initial equilibrium shape and This study are applied cable reinforced in Monkey Saddle, Handkerchief surface and Thomsen surface under a prescribed prestress system and boundary condition. Additionally, the variables of Monkey Saddle, Handkerchief surface and Thomsen surface have been studied. Monkey Saddle TFS models with variables u=v<2.23, Handkerchief TFS models with variables u=v<3.13and Thomsen TFS models with variables u=v<2.00 have been found corresponding to equal tension surface. The result shows the model of Monkey Saddle soap film with variables u=v<2.23, Handkerchief soap film with variables u=v<3.13 and Thomsen soap film with variables u=v<2.00, The surface of computational and experimental form-finding are compare together. Then, geometry surface of computational and experimental models have been found to match very closely. The model of Monkey Saddle, the transformation of variables in Monkey Saddle shows the constants u and vincrease, the height between legs and tail also increase. The form-finding of Monkey Saddle cable reinforced has been found to converge. For the model of Handkerchief surface, transformation of variable in Handkerchief surface. When, the constant u and v increase, the area of the surface also increases. Form-finding of Handkerchief cable reinforced have been found to converge. For model of Thomsen surface, The transformation of variables in the Thomsen surface shows that the constants u and vincrease, and the turning of Thomsen surface also increased. Form-finding of Reinforced Thomsen cable has been found to converged. The initial equilibrium shape of Monkey Saddle, Handkerchief surface and Thomsen surface will provide alternative shapes for designers to consider for adoption in tensioned fabric structures.

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah S.W.T for His blessing and strengths in completing this research.

Firstly, I would like to express my deepest gratitude to my supervisor Assoc Prof Ir. Dr. Yee Hooi Min and my co-supervisor Assoc Prof Dr. Nor Hayati binti Abdul Hamid and Assoc Prof Dr. Cunlin Li. My research would have been impossible without their guidance, support and motivation. Heartfelt thanks goes to Dr. Kay Dora binti Abdul Ghani who provided an adequate facilities as well as assistance during the research process that allow the process went smoothly, special thanks to my colleagues and friends for the encouragement and helps.

Last but not least, to my beloved parents Abdul Hadi bin Saad and **Constitution** for their simultaneous encouragement that allowed this research to be finished as request.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xxvi
LIST OF ABBREVIATIONS	xxvii
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Objective	3
1.4 Scope and limitation	4
1.5 Significance of Study	4
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction	6
2.2 History of TFS	6
2.3 Fabric Surface	7
2.4 Sag ratio	8
2.5 Checking the orientation of element nodes	9
2.6 Convergence criteria	9
2.7 Minimal surface in TFS	10
2.7.1 Curved Quadrilateral Finite Element	10
2.7.2 Conjugate Gradient Method	11
2.7.3 Updated Reference Method	12
2.7.4 Dynamic Relaxation Method	13

2.7.5 Plateau-Bézier Problem	14
2.7.6 Force Density Method	14
2.7.7 Nonlinear displacement method	15
2.7.8 Quasi-harmonic Bézier approximation	23
2.7.9 Soap film model	23
2.7.10 Isogeometric finite element approximation of minimal surfaces	24
2.8 Other minimal surface in TFS	25
2.8.1 Interactive computer graphics design system	25
2.8.2 Soap film model	26
2.9 Dynamic relaxation method	27
2.10 Monkey Saddle, Handkerchief and Thomsen surface	29
2.11 New form of minimal surface as surface form in TFS	31
2.12 Nonlinear Analysis Method	32
2.13 Conclusion	34
CHAPTER THREE: RESEARCH METHODOLOGY	36
3.1 Form-finding	36
3.1.1 Computational form-finding	38
3.2 Experimental form-finding	50
3.3 Verification	56
CHAPTER FOUR: RESULTS AND DISCUSSION	57
4.1 Introduction	57
4.1.1 Generation of minimal surface	57
4.2 Computational form-finding	63
4.2.1 Monkey Saddle	64
4.2.2 Handkerchief Surface	118
4.2.3 Thomsen Surface	167
4.3 Experimental Form-finding	211
4.3.1 Monkey Saddle Soap Film	213
4.3.2 Handkerchief Soap Film	215
4.3.3 Thomsen Soap Film	217
4.4 Discussions	219