

HYDRODYNAMICS STUDIES OF LOW TEMPERATURE MODEL OF FLUIDIZED BED

MARLIANA MOHAMED (98713616)

A thesis submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > SEPTEMBER 2002

i

ACKNOWLEDGEMENT

I would like to express my heartfelt sincere gratitude to my supervisor, Associate Professor Ramlan Zailani of the Mechanical Engineering Faculty, UiTM, Shah Alam. His continuous guidance, assistance, support, suggestions and comments in the duration of the thesis preparation until its completion.

My appreciation also goes to Jabatan Perkhidmatan Awam (JPA) which granted the financial assistance throughout my degree program. I also would like to En. Sopi, the technician of the thermodynamics laboratory and En. Dahari, the technician of the foundry laboratory for their assistance on the instruments that were used for this study. May Allah s.w.t reward and bless us.

ABSTRACT

Fluidization is an operation by which solid particles are transformed into a fluidlike state through suspension in a gas or liquid. Many important industrial processes rely upon intimate contact between a fluid whether it is a gas or a liquid and a granular solid materials. These processes vary widely from grain drying to a wide range of chemical reactions including combustion. Provided the material is suitable to undergo this process, great improvement in mixing and contact is achieved if the granule size is matched to the upward velocity of the fluid so that the drag forces support the particles of material. The bed of the granular material is "fluidized" in this condition. The behavior of a fluidized bed regarding its fluidization phenomena was studied with Hilton Fluidization and Fluid Bed Heat Transfer Unit H692. Few parameters were being studied and observed. They are variation bed particles sizes, variation of bed heights, variation of bed temperatures and mixture of biomass and silica sand. These are to achieve one main objective and that is to determine the minimum fluidization velocities, Um experimentally. The results were compared with the established equations. It was found that the results obtained from experimental works and the established equations are in agreement with the percentage of difference ranging from 10% to 70%. The effect of foreign particles mixing with bed materials does result a smaller value of U_{mf} compared with none mixing. The U_{mf} obtained for the mixing were compared with an established equation. The percentage of difference is less than 10%.

TABLE OF CONTENTS

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ï
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii

CHAPTER 1 INTRODUCTION

1.1	Phenc	omena of Fluidization	1
1.2	Classi	fication of Particles	3
1.3	Fluidization Applications		5
	1.3.1	Physical Industrial Processes	6
	1.3.2	Chemical Industrial Processes	7

10

CHAPTER 2 OBJECTIVE

CHAPTER 3 METHODOLOGY

3.1	Materials	11
3.2	Instruments	13
3.3	Operation	16
3.4	Experimental Procedures	16
3.5	Experimental Limitations	17

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Minimum Fluidizing Velocity	19
4.2	Variation of Size Particles	22
4.3	Variation of Bed Heights	26
4.4	Variation of Bed Temperatures	26
4.5	Mixture of Silica Sand and Biomass	29

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclu	usions	33
5.2	Recommendations		
	5.2.1	Apparatus	33
	5.2.2	Future Work	34

REFERENCES

35

APPENDIXES

Appendix A	Thermal Properties of Common Solids and Gases	36
	at 20°C	
Appendix B	Voidage at Minimum Fluidizing Conditions, ϵ_{mf}	37
Appendix C	Viscosity and Density of Air at 1atm	38
Appendix D	Figures of Obtained Experimental Data	39
Appendix E	Observation Sheet	50
Appendix F	Work Shedule for the Study	55