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ABSTRACT 

 

The bending stiffness of transmission line conductors can vary significantly, 

ranging from maximum stiffness when behaving monolithically to minimum 

stiffness when wires behave loosely. This large range makes it challenging to 

estimate stiffness accurately at intermittent bending stages. To address this 

issue, a mathematical model that accounts for both frictional forces between 

wires in the same layer and the clenching effects of helical wires from 

preceding layers is proposed in this paper. The proposed model estimates 

cable bending stiffness as a function of axial load and curvature for 

multilayered strands by considering slip caused by wire behavior. To evaluate 

the bending stiffness, experiments were conducted on Panther and Moose 

Indian Power Transmission line conductors. The proposed slip model 

considers Coulomb frictional effects and clenching effects caused by Hertzian 

contact forces, filling the void in the estimation procedure. Additionally, the 

model considers the wire stretch effect, a parameter not previously accounted 

for in cable research. The predicted numerical results of the proposed model 

were found to vary within a maximum of 7% from the experimental tests. The 

proposed mathematical model thus offers a more accurate and comprehensive 

way of estimating the bending stiffness of transmission line conductors, 

addressing the existing limitations in the estimation procedure. 

 

Keywords: Bending Stiffness; Revised Slip Theory; Inter Wire Friction; 

Transverse Load 
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Introduction 
 

The helically wound cables find extensive usage in overhead power 

transmission line applications all over the world. The conductors are formed 

with the central core assembly made of steel for withstanding the stringing 

tension and concentric layers of helical wires of aluminum, wound over the 

core assembly, and are used for electrical power transmission. Such conductors 

are known as Steel Reinforced Aluminum Conductors (ACSR) cables. 

Advancements in material technology have also resulted in All Alloy 

Aluminum Conductors (AAAC), composite conductors, and other new 

conductors with alternate materials. The structural assembly of such cables 

undergoes an axial pulling tension, and varying transverse bending curvatures, 

depending upon the mode of vibration of such cables due to the wind forces. 

The lateral response of such cables is influenced by the bending stiffness of 

the cable assembly which in turn depends upon the tribological interaction of 

the constituent wires, the frictional forces present in the contact locations, and 

the resistive mechanism offered at the wire interfaces. The accuracy of the 

response depends on the effectiveness of the mathematical model that 

considers the forces and moments that arise in the helical wire interfaces about 

its three mutually perpendicular axes. Though many mathematical models are 

stipulated in the last five or six decades in cables, seldom they consider the 

influence of wire forces and moments about its normal, bi-normal, and axial 

directions together, in any analysis and evaluation of the cable response. 

Though the dominant wire force and moments about the axial directions were 

never missed by many authors, due weightage of the contribution in the other 

two directions (normal and bi-normal) were not considered effectively, as a 

result of which the analytical predictions have not only become inaccurate but 

also lead to inconclusive results with some empirical relations. Though the 

global behavior of the cable apparently seems to be all right even with the 

omission of some forces/moments, the mechanism of its constituent wires 

needs a fully proven scientific explanation that predicts the local behavior also 

correctly. The ultimate response of the cable will be complete when accurate 

theories are attributed to global and local behaviors.  

The effective stiffness of the cable assembly in its bent state varies 

widely between two extreme behaviors – a monolithic infinite friction state 

offering the maximum stiffness and a completely loose wire zero friction state 

offering the minimum thickness. Due to this wide variation, the estimation of 

the cable stiffness at any intermittent stage of bending has been under 

continuous refinement, a process that very much depends on the number of 

intricate parameters that are adopted by the researchers. Even though about 

150 publications have been made over the last two decades on this trivial area, 

salient research that can be categorized and grouped is only presented in this 

paper to explain the gradual evolution and to emphasize the parameters that 

are included for refinement at various stages.  
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McConnell and Zemke [1] were the early investigators who conducted 

the experimental tests on overhead power transmission line conductors and 

observed a wide variation, of the order of 1:55 in their extreme values of the 

bending stiffness. This triggered interest in cable researchers to study the inner 

mechanism and propose analytical models that explain the bending behavior 

reasonably. Though fundamental mechanics relations for the equilibrium of 

the helical wires were established by Love [2], systematic analytical 

investigations began by the Costello [3] team in 1982. Treating the cable as an 

assembly of frictionless springs, Costello [4] improvised the Equations of Love 

and summarized his findings in his book. Sathikh [5] considered the internal 

friction forces that arise due to the twisting of the wires in a bent cable and 

formulated the expressions for the reduction of bending stiffness due to wire 

twists. The primary cause for this wire twist was observed to be the 

predominant axial force in the wire. Le-Clair and Costello [6] considered the 

axial friction force in the helical wires and predicted the stress and contact 

forces in a singled layered cable under the action of axial, torsional, and 

bending loads. When Papailiou [7] addressed the bending phenomenon of 

cables, the friction forces generated between the interlayers were also 

considered and a smooth transition of stiffness from stick to slip state was 

noticed. However, the axial force in the helical wire was considered to be the 

only cause in this analysis. Cardou [8] summarized the various models adopted 

for bending analysis in his review paper to that date. Sathikh et al. [9] for the 

first time, attempted to investigate the basic wire mechanics that resulted in the 

curvature and twist expressions and noticed the absence of a parameter called 

“wire stretch” influencing the successive bending and twisting of the helical 

wire. This parametrical inclusion of the wire stretch altered the basic curvature 

and twist relations of the helical wire and influenced the evaluation of wire 

moments in all its three axes. A single layered cable was analyzed for its pre-

slip behavior and the maximum bending stiffness was re-estimated with these 

basic relations and found to be 16% lesser than the usual upper bound, 

monolithic stiffness estimation. This opened the need for considering certain 

intricate wire parameters that were ignored till this date. Hong [10] extended 

the Papailiou model to a multilayered cable but limited the analysis with wire 

axial force as the main contributor to the frictional effects. Spak [11] reviewed 

the various cable models summarized their findings and cited the role of 

friction and contact deformation in the helical wire of the strand, as a necessary 

parametric inclusion in cable research studies. This had created the much-

needed spark in the cable researchers that followed later.  

Foti and Martinelli [12] studied a cable subjected to tension torsion and 

bending loads and analyzed the friction forces arising in the wires from 

Coulomb stick friction theory but limited the study to those wires arranged in 

the layer only. Khan et al. [13] analyzed the bending behavior of multilayered 

spiral strands by considering the hoop contact force that arises between wires 

in the same layer and included the effect of contact deformation. Zheng et al. 
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[14] modeled the bending behavior of the spiral strands by considering the wire 

slippage caused by the bending loads. A gross slip criterion using the Coulomb 

hypothesis is formulated and the slippage of the wires is studied under the 

radial compression from the wires situated above. The basic Papailiou’s 

analytical model considering the wire axial force as the main contributor for 

the slippage has been adopted by Zheng.  

Recently, Zhou et al. [15] analyzed the effect of friction on the bending 

behavior of a single layered strand by considering the Coulomb friction 

hypothesis to model the slippage of the wires in the axial direction. The radial 

contact deformation of the helical wires and the central core wire had been 

considered to arrive at the deformed geometry. The axial slip at the helical wire 

interface had been studied and the reduction in the bending stiffness was 

evaluated as a function of cable axial loads. Though the analysis procedure had 

been simulated with a computer program, it did not consider the wire forces in 

the normal, and bi-normal directions and their moments, including the effects 

of radial clenching forces from the wires placed in the layers above. The 

bending curvatures had been introduced by imparting a transverse load 

arrangement on an axially loaded taut cable. The variation of the bending 

stiffness and the consequent deflection had been experimentally measured on 

a single layered cable for various axial load-transverse load combinations. 

A quick review of the various bending models as of date indicates that 

the inter-wire slip among the helical wires has been addressed with the 

Coulomb friction force caused in the axial direction of the wire alone. Modes 

of slip in other wire directions were not considered. Though this may work 

fairly well on a single layered cable, it is not sufficient to analyze a multi-

layered cable, where the slippage is not only caused by the Coulomb friction 

forces of the wires in the concerned layer alone but is also influenced by the 

radial clenching forces from the wires placed in the preceding layers. Even a 

few authors who studied the radial clenching effect due to the wires above, 

have not accounted for the effect of the same on the slip but have simply 

accounted for it with Coulomb friction theory only. 

Noticing the above vital gap in cable bending research, Hadiya et al. 

[16]-[17] brought out two publications in which a revised cable bending model 

had been suggested to estimate the bending stiffness. The first publication, 

Hadiya et al. [16] included a parameter called ‘wire stretch’ that remains 

fundamentally in the straight wire before it takes successive stages of bending 

and twisting to form a helical path. When a cable is loaded, the change in 

normal and bi-normal curvature and the change in twist of the helical wire are 

influenced by the ‘wire stretch’ and hence alter the basic wire kinematic 

relations that are adopted to this date by all the researchers. Further, the shear 

displacement relation of the helical wire due to this ‘wire stretch’ has also been 

accounted for the first time in cable bending. All these revised fundamental 

kinematic relations have been formulated for a single layered cable and its 

maximum stiffness in the monolithic stage has been evaluated and compared 
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with the published results. A reduction of cable bending stiffness up to 5% has 

been noticed. 

When a multi-layered cable under a higher axial load is bent, the radial 

clenching forces introduced from the wires in one layer to that in the adjacent 

layer beneath it, are significant enough to cause local deformation at the 

contact interfaces. This deformation can be addressed by the Hertzian contact 

theory. The slip caused by this additional deformation has also to be considered 

along with the usual slip that is estimated in the axial direction of the wire by 

Coulomb friction theory. While many authors have accounted for the axial slip 

due to Coulomb friction theory, Hadiya et al. [17] considered for the first time 

in cable bending the slip caused by the radial contact forces and accounted for 

the slippage of the helical wire due to the Coulomb friction forces and the 

Hertzian contact forces. The slip due to Coulomb friction theory has been 

addressed as a macro slip and the one due to Hertzian contact theory has been 

addressed as a micro slip. A novel slip model that combines the macro and the 

micro slip phenomenon has been suggested and the cable bending stiffness has 

been evaluated for a single layered cable as a function of bending curvature 

and compared with the recent works of Khan [13]. A maximum reduction of 

4.34 % in bending stiffness has been noticed with the present model for a cable 

axial load of 10 kN 

This paper is an extension of the analytical modeling of Hadiya [16]-

[17] to a multilayered cable arrangement. The revised kinematic relations that 

include the ‘wire stretch’ effect have been extended to all the helical wires, 

placed in different layers of the strand, and the basic wire forces and moments 

have been accounted for with these improvised relations. The slippage of the 

wires in each layer has been considered to occur under the combined effects 

of macro and micro slip phenomenon. Special care has been taken to include 

the influence of radial clenching forces, introduced from the wires placed in 

the preceding layers. The bending moment in each layer has been evaluated by 

accounting for the respective status of no-slip, partial slip, or full slip, that 

exists at any bending curvature. The effective strand bending stiffness has been 

investigated as a function of curvature for two commonly used multilayered 

conductors - ACSR Panther and Moose for various axial loads of the cable. In 

order to validate the mathematical model, experimental tests are carried out on 

specially constructed test rigs that can accommodate a maximum span 

arrangement of 40 m. A transverse loading mechanism that can impart a 

vertical lateral load on the taut conductor has been fabricated. The lateral 

deflection of the conductor is measured at different locations of the conductor 

for various cable axial load-transverse load combinations. The detailed 

arrangement of the salient mathematical formulations is presented in the 

following section. The experimental test arrangement and the measurement 

procedure are elaborated. The bending stiffness evaluated from the measured 

deflections at these locations is compared with the analytical results of the 

revised combined slip theory. It is hoped that the new revised slip model will 
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be able to fill the void and predict the cable bending stiffness in a realistic 

manner.  

 

 

Salient Mathematical Formulations 
 

Revised kinematic relations 
When a cable is applied with a tensile load, all the helical wires experience 

tensile force along their axes. When the wire is subsequently bent and twisted 

to take a helical path, the influence of the basic axial force and its consequent 

stretch is also carried out in the successive bending and twisting phenomenon. 

This is known as the ‘wire stretch effect’. The revised kinematic relation of the 

wire curvatures in the normal and binormal directions (𝜔𝑛′, 𝜔𝑏′) and the twist 

(𝜔𝑡′) are presented in Equation (1) to Equation (3) for a helical wire at a 

position angle (𝜙). 

 

𝜔𝑛′ = 𝜅(cos 𝛽 (1 + sin2 𝛽) − 𝑎1 sin 𝛽 cos 𝛽 + 𝑎3 𝑠𝑖𝑛2 𝛽
+ 𝑎2 sin 𝛽) sin 𝜙 

 (1) 

𝜔𝑏′ = 𝜅(cos4 𝛽 + 𝑎1 sin 𝛽 − 𝑎2 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽) cos 𝜙  (2) 

𝜔𝑡′ = 𝜅(− sin 𝛽 cos3 𝛽 + 𝑎3 sin 𝛽 + 𝑎2 𝑠𝑖𝑛2 𝛽) cos 𝜙 (3) 

 

where 𝜅 is the total curvature of the strand, 𝛽 is the lay angle, and 

𝑎1 , 𝑎2 and 𝑎3 factors defining shear strains and twists. 

 

Revised slip model 
The displacement or the slip of a helical wire at any contact interface is 

composed of a macro slip (∆̅1) initiated by the Coulomb friction effects and 

the micro slip (∆̅2) caused by the contact deformation of the radial clenching 

forces (𝑋0). This paper judiciously combines them as an equivalent spring in 

series arrangement, since both these slips are affected by the same source of 

wire axial force (𝑇). The total bending curvature of the strand at any contact 

interface is obtained as:  

 

𝜅 = 𝜅1 + 𝜅2 = 𝜅1 (1 + (
∆̅2

∆̅1

)) (4) 

 

where, 𝜅1 is the bending curvature pertaining to the axial force (T) sustained 

in the wire. The average value of the macro slip in the strand cross section is 

given by: 
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𝛥1̅ = (
2

𝜋
) 𝐵�̅�𝜅1  (5) 

 

where, 

 

𝐵 = [
(𝑟 𝑅⁄ )2

𝐸𝜋 sin2 𝛽 
] 

 

(6) 

�̅� = 𝐸𝐴 cos2 𝛽 sin 𝛽 (7) 

 

where, R, A, and E are the radius, cross-section area, and elastic modulus of 

the wire, and r is the helix radius of the wire. The average value of the micro 

slip caused by the radial contact force (𝑋0) at any cross-section of the strand 

is given by: 

 

𝛥̅
2 = 𝑑 (

2

𝜋
) ∫ [1 − (1 −

�̅�𝜅1 𝑠𝑖𝑛 𝜙

𝜇𝛸0

)

2/3

] 𝑑𝜙

𝜋/2

0

 (8) 

 

where, 

 

d =
3

2
(

𝜇Χ0𝑆22

1 − 𝜐
) (9) 

 

is obtained from the tangential compliance 𝑆22 of the helical wire of Poisson 

ratio 𝜐 and 𝜇 is the co-efficient friction at the wired interface. 

 

Slip regimes and curvatures 
The helical wire at any cross section will undergo three stages of slips, namely- 

no slip, partial slip, or full slip depending on the applied axial force in the wire 

(�̅�) and the resisting friction force (𝜇Χ0), caused by the normal contact force 

(Χ0) at any surface with a friction coefficient (𝜇). 

The wire will be in the monolithic state when the applied axial force is 

less than the resisting friction force, and as a limiting case, where these two 

forces become equal, slip is initiated at a wire position 𝜙 = 90𝑜 located along 

the neutral axis. The slip initiation curvature is given by: 

 

𝜅𝑜 =
𝜇Χ0

�̅�
 

 
(10) 

The progress of the slip will be initiated from this location and the wire 

will undergo a partial slip state when the position angle (𝜙𝑏) lies between 0o 

to 90o and the curvature of the partial slip state is identified as: 
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𝜅𝑏 = 𝜅𝑜 (

𝜋
2

− 𝜙𝑏

cos 𝜙𝑏

) (11) 

 

On further loading, the wire attains a full slip state at the curvature: 
 

𝜅𝑓 =
𝜋

2
𝜅𝑜 (12) 

 

Strand bending stiffness 
The bending moment developed in any layer of the strand at any cross-section 

is a function of its bending curvature and the resultant summation of the 

moments of the individual wires, depending on their position angles, applied 

axial force (T), the resisting force, and their slip status. 

The wires in the monolithic state as shown in Equation (10) will be 

acted upon with a bending moment given by: 

 

𝑀𝑇 =
𝑚

2
𝐸𝐴𝑟2𝜅1 cos3 𝛽 (13) 

 

where, the curvature 𝜅1 is below the limiting curvature 𝜅𝑜 and m is the number 

of wires in that layer. The wires, whose positions are lying between 0 to 
𝜋

2
, will 

be in the partial slip stage or full slip stage as dictated by Equations (11) and 

(12) depending on the resisting forces developed. Accordingly, the bending 

moment of such wires is given by: 

 

𝑀𝑇𝑝
=

𝑚

𝜋
𝐸𝐴𝜅𝑟2 cos3 𝛽 [∅𝑏 +

sin 2∅𝑏

2
] 

 

(14) 

𝑀𝑇𝑠
= 𝑚𝑟2 cot 𝛽 𝜇𝑋𝑜 (

2

𝜋
) [cos ∅𝑏 + ∅𝑏 sin ∅𝑏 −

𝜋

2
sin ∅𝑏] (15) 

 

The fully slipped wires at any cross-section are identified by Equation 

(12) and their corresponding bending moment is given by: 

 

𝑀𝑇𝑓
= 𝑚 (

2

𝜋
) 𝜇Χ𝑜𝑟2 cot 𝛽 (16) 

 

The layer bending moment of the strand at any cross-section due to the 

axial force (𝑀T) is the sum of the moments of the individual wires that are in 

no slip / partial slip or full slip stages as shown by Equations (14), (15), and 
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(16). The moment generated in a layer of strands due to the rolling of wires 

that are acted upon by the wire moments 𝐺, 𝐺′ 𝑎𝑛𝑑 𝐻 is given by:  

 

𝑀𝐺 = 𝑚 (
2

𝜋
) ∫ 𝐸𝐼𝜔𝑛′ sin 𝜙

𝜋 2⁄

0

𝑑𝜙 

 

(17) 

𝑀𝐺′ = 𝑚 (
2

𝜋
) ∫ 𝐸𝐼𝜔𝑏′ cos 𝛽 cos 𝜙

𝜋 2⁄

0

𝑑𝜙 

 

(18) 

𝑀𝐻 = −𝑚 (
2

𝜋
) ∫ 𝐺𝐽𝜔𝑡′ sin 𝛽 cos 𝜙

𝜋 2⁄

0

𝑑𝜙 (19) 

 

where I and J are the area moment of inertia and polar moment of inertia of the 

helical wire. The layer bending moment at any cross-section of the strand due 

to the rotation of the wires can be obtained as: 

 

𝑀𝑟 = 𝑀𝐺 + 𝑀𝐺′ + 𝑀𝐻 (20) 

 

The net layer bending moment of the strand at any cross section can be 

obtained as a summation of the moments caused due to the axial force (𝑀𝑇) 

and that due to the rotation of the wires (𝑀𝑟). 

 

𝑀𝑏𝑖
= 𝑀𝑇 + 𝑀𝑟 (21) 

 

The total bending moment in the strand at any cross-section, can then 

be obtained as the summation of the bending moments of all the layers and that 

of the central core as given by: 

 

Mb = ∑ 𝑀𝑏𝑖

𝑙

𝑖=1

+ 𝐸𝐶𝐼𝐶𝜅 (22) 

 

where ′𝑙′ is the number of layers in the strand, 𝐸𝐶𝐼𝐶  are the modulus of rigidity 

and the area moment of inertia of the core and 𝜅 is the total curvature of the 

strand. The strand bending stiffness at any cross-section of the strand can be 

obtained from the plot of 𝑀𝑏 vs 𝜅 or from the relation: 

 

𝐸𝐼𝑠𝑡𝑟𝑎𝑛𝑑 = 𝑀𝑏/ 𝜅 (23) 
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Numerical results of bending stiffness 
The mathematical formulation discussed in the previous section is numerically 

worked out for two multilayered conductors – ACSR Panther (three layers and 

one central straight wire) and ACSR Moose (four layers and one central 

straight wire), whose specifications are mentioned in Table 1. 

 

 

 
(b) 

 
(c) 

 

(a) (d) 

 

Figure 1: (a) Pictorial view of a multilayered cable and schematic cross-

section diagrams of (b) a single layered cable, (c) a three layered cable, and 

(d) a five layered cable 

 

The axial loads that are applied on these conductors are restricted to 

25 ± 5% of their ultimate breaking strength, as those are the usual working 

loads, as per Indian Standard-398 [18] recommendations. The cable axial 

strain (𝜖), corresponding to this axial load is evaluated by treating the 

conductor to be in a monolithic state in accordance with its initial state. The 

bending curvature (𝜅1) corresponding to a helical wire, placed at the outer 

layer is evaluated as per its axial and angular position in the strand. 

 

Table 1(a): Material and geometrical properties of ACSR Panther conductor 

 

Layer 

no. 
Material 

No. of 

wires 

Wire 

diameter 

(mm) 

Lay angle 

(degrees) 

Young's 

modulus 

(N/mm2) 

Ultimate 

breaking load 

(kN) 

1 
Steel 

1 3 0 207000 

89.67 
2 6 3 5.83 207000 

3 
Aluminum 

12 3 10.94 69000 

4 18 3 14.04 69000 
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The axial strain (∈𝑤) in the helical wire located on the outermost layer 

at a particular cross-section is evaluated from its geometrical location and the 

wire axial force (𝑇) and its corresponding radial clenching contact force (𝑋𝑜) 

are evaluated. Depending on the friction coefficient between the materials of 

the outermost and the immediate wires placed below, the frictional resisting 

force is also evaluated. The limiting curvature at which slip is initiated in this 

wire as per the Coulomb friction theory is found in Equation (10). The status 

of slip in the other wires in this layer is investigated as per Equations (10) to 

(12) and the bending moment due to the axial force that causes axial slip is 

evaluated for all the wires in the outermost layer from the appropriate 

Equations (13) to (16). Due care was taken to include the effective slip caused 

by Coulomb friction theory (macro slip) and the one caused by micro slip due 

to the contact deformation of the wires as listed in Equations (1) to (9). 

 

Table 1(b): Material and geometrical properties of ACSR Moose conductor 

 

Layer 

no. 
Material 

No. of 

wires 

Wire 

diameter 

(mm) 

Lay angle 

(degrees) 

Young's 

modulus 

(N/mm2) 

Ultimate 

breaking load 

(kN) 

1 Steel 1 3.53 0.00 207000 

159.6 

2 Steel 6 3.53 6.32 207000 

3 

Aluminum 

12 4.13 10.70 69000 

4 18 4.13 11.70 69000 

5 24 4.13 13.10 69000 
 

The bending moment in the layer corresponding to the rotational 

movements of the helical wires is evaluated from Equations (17) to (19) and 

the net bending moment in the outer layer is calculated from Equations (20) 

and (21). The assembly of all the wires underneath this outermost layer is 

treated as a monolithic assembly and its stiffness is evaluated as mentioned in 

the works of Hadiya et al. [16]. The total stiffness of the strand is evaluated 

from Equations (22) and (23) after accounting for the center wire. 

The status of slip at other cross sections of the cable is identified as per 

the procedure mentioned above, for all the wires in the outer layer as per the 

first portion of the cable stiffness vs curvature plot of Figure 2(a) pertaining to 

ACSR Panther conductor for an axial load specified for an axial load of 20% 

ultimate tensile stress. 

By increasing the curvature further, the slip initiation curvature of the 

penultimate layer (the immediate inner layer of the outermost) is identified and 

the various slip stages are accounted for as the slip progresses and the layer 

bending stiffness is evaluated as that of the outer layer. The cable stiffness at 

this stage is the sum of the current penultimate layer stiffness the monolithic 

stiffness of the cable underneath this layer and the loose wire stiffness for the 

outer layer, which has fully slipped by now. The similar procedure is repeated 
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for all the other layers and finally, the central core wire stiffness is added to 

account for the total cable bending stiffness. 

The complete stiffness distribution plot as a function of cable curvature 

is shown in Figure 2(a) for different axial loads namely 20%, 25%, and 30% 

UTS of the conductor as recommended in Indian Standard-398. A similar 

distribution plot is obtained for ACSR Moose as shown in Figure 2(b) The 

variation of the bending stiffness as a function of strand curvature confirmed 

the complete transition of the cable from a monolithic stick state to a loose 

wire gross slip state explaining the slip hypothesis adopted in this work. 

 

 
(a) 

 

 
(b) 

 

Figure 2: Strand bending stiffness-curvature plots for; (a) ACSR panther 

conductor, and (b) ACSR moose conductor 
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Experimental Evaluation of Bending Stiffness 
 

Experimental setup and procedure  
The analytical approach presented earlier in this discussion examines the 

bending stiffness of a conductor. To validate this, a bending curvature is 

introduced to the taut cable within a transmission line testing laboratory, 

facilitated by a transverse loading arrangement. Figure 3 illustrates the 

schematic diagram of the complete experimental setup. 

 

 
 

Figure 3: Schematic diagram of the experimental setup 

 

 
 

Figure 4: (a) Conductor fixed end sling arrangement, (b) loading end 

hydraulic cylinder connected with a load sensor, (c) double ended hydraulic 

cylinder with load-cell and sling, and (d) transverse load sensor and turn 

buckle arrangement 
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Figure 5: (a) conductor clamped at both ends with transverse load 

arrangement, (b) rigid clamp, (c) pulley arrangement to apply the transverse 

load at mid-span, and (d) load indicator 

Initially, the conductor is loaded onto the experimental setup, with a 

fixed length of 3 meters and one end secured as shown in Figure 4(a), and the 

other end fixed with a hydraulic cylinder (Figure 4(b)) using a sling 

arrangement. After fixing, a horizontal pull is applied to keep the conductor in 

a taut condition with the help of a double-acting cylinder (Figure 4(c)). Once 

the conductor reaches the taut condition, an axial load is applied to it, which is 

limited to 25±5% of the conductor's breaking strength, as per the Indian 

Standard-398 specification. When the axial load is applied and stabilized, the 

conductor ends are clamped between two fixed supports (Figure 5(b)). Using 

a turnbuckle and cross-load sensor (Figure 4(d)), a transverse load is applied 

to the conductor mid-span through a pulley (Figure 5(c)). The applied axial 

load and cross load are measured by respective load cells and indicators 

installed in the setup. The deflections generated due to the transverse load 

within the conductor are measured at specified locations of 300, 600, 900, 

1200, and 1500 mm. With the same axial load applied to the conductor, the 

transverse loads are increased in stages, and the corresponding deflections at 

various axial locations are measured using dial gauges. This procedure is 

repeated for different axial load-cross load combinations. These experiments 

are conducted with ACSR Panther and Moose conductors, and the resulting 

deflections are tabulated in Tables 2(a) and 2(b). 

 

Analytical simulation of experimental arrangement 
Figure 6 shows the schematic representation of the cable under the axial load 

(P), and a transvers load (Q). 
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Figure 6: Schematic arrangement of the cable loading 

The transverse deflection y(x) at an axial position is given by: 

 

𝑦(𝑥) =
𝑄𝐿3

16𝐸𝐼𝜆3
[(

1 − cosh 𝜆

sinh 𝜆
) (1 − cosh 𝑏𝑥) + (𝑏𝑥 − sinh 𝑏𝑥)] (24) 

 

𝑏 = √
𝑃

𝐸𝐼
                   𝜆 =

𝑏𝐿

2
 

 (25) 

 

where EI is the bending stiffness of the cable. The bending curvature 

corresponding to this location is given by: 

 

𝑦′′(𝑥) =
𝑄𝐿3

16𝐸𝐼𝜆3
[(

1 − cosh 𝜆

sinh 𝜆
) (cosh 𝑏𝑥) + (sinh 𝑏𝑥)] (−𝑏2) (26) 

 

Evaluation of deflections at different axial locations 
It can be noted that the defection or the curvature at any location of the cable 

along the axis can be determined from Equations (24) and (26) if the 

appropriate value of the bending stiffness (EI) prevailing at that location is 

known. Bending stiffness values exhibit variations at different locations, 

influenced by curvatures and the degree of slippage on the bent cable. The 

detailed slip theories, as discussed earlier, explain this phenomenon. Figure 2 

illustrates the variation of stiffness for Panther and Moose, portraying the 

relationship with cable curvatures. 

If the stiffness of a cable at a particular location is to be calculated, the 

curvature of that location is to be known as apriori. In order to obtain the 

curvature and the corresponding stiffness and deflections of the cable at 

different axial positions along the cable, the following procedure is adopted. 

1. The bending stiffness vs curvature plot is obtained as per the revised slip 

theory for a particular conductor for a known axial load (P) as shown in 

Figure 2. 

2. The length of the conductor is divided into a suitable number of steps. 

3. The curvature (𝑦′′) at the first step is calculated using Equation (26) by 

substituting the monolithic stiffness value for EI based on the Equation 
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reported by Hadiya et al. [16] for the known axial load (P) and the cross 

load (Q). 

4. The stiffness value EI at this step is corrected from the stiffness curvature 

plot of the conductor (Figure 2(a) or 2(b)) by noting the curvature for this 

section on the horizontal axis and by obtaining the corresponding 

stiffness value from the plot on the vertical axis. It can be noted that a 5th 

and 7th-order data fit equation having the co-efficient of determination 

(𝑅2) of 0.96, is developed to capture the bending stiffness for any 

curvature accurately from the above plots. 

5. The deflection of the first step is calculated from Equation (24) by using 

the revised value of EI obtained from Step 4. 

6. The curvature at the next step is obtained from Equation (26) using the 

stiffness value of the previous section obtained in step 4 and the 

corresponding deflection at this section is calculated as in step 5. 

7. The above procedure is repeated for all the points up to the desired 

location and the corresponding deflection is obtained. 

 

Comparison of numerical and experimental results 
Tables 2(a) and 2(b) show the measured transverse deflections of ACSR 

Panther and Moose conductors at different axial locations of 300, 600, 900, 

1200, and 1500 mm for cross loads varying from 980 to 3000 N. The conductor 

span between the fixed support is maintained at 3 meters, with a constant axial 

load of 29420 N. The analytical results of deflections at these locations, 

evaluated as per the revised slip model presented in this paper and by following 

the procedure outlined in the previous sections, are tabulated alongside the 

experimental values in Table 2(a) and 2(b). 

 

Table 2(a): Transverse deflection results for an axial load of 29420 N – 

ACSR Panther conductor 

 

Transverse 

load in N 

The position where displacements were is measured in mm 

Experimental Numerical 

300 600 900 1200 1500 300 600 900 1200 1500 

980 1.6 4.0 6.3 8.5 10.5 1.7 4.1 6.6 9.0 10.7 

1470 3.6 8.5 13.0 18.2 22.0 3.8 8.8 13.8 18.8 22.5 

1960 6.0 13.5 20.5 28.0 33.5 6.2 13.7 21.2 28.7 34.3 

2450 9.0 19.0 29.0 39.5 45.0 8.7 18.7 28.7 38.7 44.5 

2940 12.0 23.0 37.0 50.0 60.5 11.1 23.6 36.1 48.7 59.7 

 

Figures 7 and 8 show the transverse load vs displacement plots for 

ACSR Panther and Moose conductors for two axial positions 300 mm and 900 

mm. The numerically evaluated results as per the combined slip model adopted 

in this paper are plotted as a function of transverse load. The measured 

deflections are also plotted for the five-transverse loads of 980, 1470, 1960, 
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2450, and 2940 N used in the experimental tests. The predicted results are 

found to vary with a maximum of 7% from the experimental values. The 

displacement plots of the combined slip model are also compared with the 

predicted results of the loose wire approach and monolithic behavior models 

discussed in the recent works of Hadiya et al. [16]. 

 

Table 2(b): Transverse deflection results for an axial load of 29420 N – 

ACSR Moose conductor 

 

Transverse 

load in N 

The position where displacements were is measured in mm 

Experimental Numerical 

300 600 900 1200 1500 300 600 900 1200 1500 

980 2.2 4.8 8.5 16.0 22.0 2.3 5.0 8.9 17.2 23.2 

1470 4.3 7.5 14.0 24.5 34.0 4.4 7.8 14.7 26.6 35.3 

1960 6.5 11.5 21.0 35.0 45.0 6.8 12.0 21.3 36.0 46.0 

2450 9.5 22.0 35.0 48.0 65.0 9.2 21.7 34.2 47.2 63.9 

2940 11.5 25.0 40.0 55.0 70.0 11.0 24.1 39.0 52.7 68.0 

 

  
(a) (b)  

 

Figure 7: Transverse load vs. deflection for ACSR Panther conductor at; (a) 

300 m, and (b) 900 m positions 

 

It can be observed that when the transverse loads are minimal, the 

defection results agree with the monolithic approach. As the transverse loads 

are increased, the magnitude of slip increases, and the development of multiple 

slip regimes occurs, and the cable stiffness reduces and moves closer to the 

loose wire approach. Accordingly, the deflections are observed to be close to 

the loose wire behavior. In Figure 9 the displacements are plotted as a function 

of axial position for various transverse loads. 
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(a) (b) 

 

Figure 8: Transverse load vs. displacement for ACSR Moose conductor at; 

(a) 300 m, and (b) 900 m positions 

 

 
(a) 

 
(b) 

 

Figure 9: Displacement vs. axial position for various transverse loads; (a) 

Panter, and (b) Moose 

 

 

Conclusions 
 

Many models that are used to estimate the cable bending stiffness consider the 

slippage among the wires, due to the Coulomb frictional forces only. In the 

bending of multi-layer cables, the radial clenching forces, and their consequent 

deformation on the wires, are also responsible for estimating the extent of 

slippage. This paper considers this much-neglected aspect and estimates the 

slippage caused by the conventional coulomb frictional forces among the wire 

and that caused additionally by the clenching effects of the preceding layers 

placed above a helical wire, in any cable arrangement. The former is called 

macro slip and the later one is known as micro slip and the cable bending 

stiffness is evaluated with a judicial combination of the above as a spring in 

series arrangement. In addition, the basic cable kinematic relations that 
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describe the curvature and twist are revised with a parametric inclusion called 

the ‘wire stretch effect’, a fundamental physical happening in the wire under 

tension but consistently influencing the subsequent bending and twisting 

phenomena in the wires. Two ACSR multilayered cables-Panther and Moose 

used widely in Indian power transmission are considered for numerical 

evaluation and experimental verification of bending stiffness under various 

axial loads. The bending curvatures are introduced to the taut cables with a 

special transverse loading mechanism and the deflection of the cable along its 

selected axial locations is measured and compared with the numerical results. 

The major conclusions are outlined as under: 

1. The slippage of the wire is initiated always on the outer layer first, among 

the wires placed near or on the neutral axis and progresses to other wires. 

With increased curvature the slip segments extend and the reduction in 

the bending stiffness occurs while the layer below maintains a monolithic 

state. 

2. Subsequent increase in the cable curvature initiates slip in the wires 

located in the layer below and the wires undergo partial slip or full slip 

or their combinations and the cable stiffness reduce drastically as a 

function of curvature and attains a completely slipped loose wire state. 

The slip-initiating curvatures are found to increase with the cable axial 

loads and so the bending stiffness reduction. 

3. The cable bending under the small transverse loads resembles a 

monolithic behavior and the stiffness is closer to the monolithic stiffness. 

This effect is pronounced more in cable under high axial loads. 

4. When the transverse loads are increased and reach a threshold limit of an 

axial load combination, the cable behavior moves closer to the loose wire 

behavior, particularly on axial locations that are closer to the mid span. 

5. The predicted results of transverse deflections of any axial position of a 

cable with the combined slip model of this paper are found to be closer 

to the experimentally measured value with a maximum variation of 7%.  

6. The displacement versus the transverse load plots of the combined slip 

model suggested in this paper, indicate its adherence to a monolithic state 

when the cross loads are minimal, and the cable deflections move towards 

a loose wire state when the transverse loads are increased. At their 

threshold limits, they attain a complete loose wire behavior. 

It is hoped that the refined kinematic parameters and the combined macro and 

micro slip theory adopted to estimate the stiffness of wires will enable a 

realistic estimation of cable bending stiffness by cable designers and 

researchers. 
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