UNIVERSITI TEKNOLOGI MARA

PROTEOMIC CHARACTERIZATION OF Corynebacterium pseudotuberculosis BIOFILM

SYAIDA ANATI BINTI ABD RASHID

Thesis is submitted in fulfillment of the requirement for the degree of **Master of Science** (Applied Biology)

Faculty of Applied Sciences

February 2023

ABSTRACT

Corynebacterium pseudotuberculosis is a pathogenic intracellular parasite causing caseous lymphadenitis (CLA) mostly in sheep and goats, thus, leading to significant economic losses. The morphology, biochemical composition, and antimicrobial susceptibility pattern of C. pseudotuberculosis biofilm have previously been addressed. However, little is known about the whole-cell proteome expression in C. pseudotuberculosis biofilm. The present study was performed to determine proteome profiles of planktonic and biofilm fractions of C. pseudotuberculosis using 1D-SDS-PAGE and to identify differentially expressed proteins during the biofilm formation by C. pseudotuberculosis using LC-MS/MS. The FESEM image showed that heterogenous C. pseudotuberculosis biofilm was successfully formed within 24h. The treatment with antimicrobials substantially inhibited the viability of the C. pseudotuberculosis biofilm. The percentage of biofilm inhibition was found to be in the range between 12.92% to 87.44%. Both planktonic and biofilm fractions showed the expression of nine protein bands ranging between 33.7 kDa and 150 kDa. However, a protein band of 48.3 kDa appeared in the planktonic fraction but not in the biofilm fraction. A total of 885 and 385 protein were successfully identified in planktonic and biofilm fractions, respectively while 264 proteins were detected at both stages. Most of them were found to be associated with transcription or translation pathways and cytoplasm. On the other hand, STRING analysis revealed a total of 1,206 functional interactions produced among differentially expressed C. pseudotuberculosis proteins. Sixty-five C. pseudotuberculosis proteins were considered as hub proteins because they showed more than 10 functional interactions in the protein interaction network. Furthermore, a total of 23 phosphoprotein in the biofilm fraction were also successfully identified and validated using gel-based phosphoprotein assay. In conclusion, biofilm formation by C. pseudotuberculosis involves multiple biological pathways and complex interaction network.

ACKNOWLEDGEMENT

First and foremost, I am extremely grateful to my supervisor, Dr. Mohd Fakharul Zaman Raja Yahya and my co-supervisor, Dr. Nurul Aili Zakaria for their invaluable advice, continuous support, and patience during my master's study. Their immense knowledge and plentiful experience encourage me during the time of my research. I would also like to thank to lab assistants for their kind help and support that made my research a little easier. Finally, I would like to express my gratitude to both of my family, especially both of my parents and my friends for their encouragement and support throughout my study.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiv
LIST OF NOMENCLATURES	xviii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objective of Study	4
1.4 Scope and Limitation of Study	4
1.5 Significance of Study	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Biofilm	5
2.1.1 Developmental Stages of Biofilm	6
2.1.2 Heterogeneity of Biofilm	10
2.1.3 Extracellular Matrix	13
2.1.4 Disease Caused by Biofilm	16
2.1.4.1 Cystic Fibrosis	18
2.1.4.2 Infective Endocarditis	19
2.1.4.3 Wound Infections	20
2.1.4.4 Mastitis	20
2.1.5 Mechanism of Antibiofilm Resistance	21
2.2 Corynebacterium pseudotuberculosis	23

2.2.1 Transmission of Corynebacterium pseudotuberculosis	25
2.2.2 Caseous Lymphadenitis	26
2.2.3 Virulence Factor of Corynebacterium pseudotuberculosis	30
2.2.4 Type of Diagnosis	34
2.2.5 Proteome of Corynebacterium pseudotuberculosis	36
2.3 Proteomics	39
2.3.1 Principle of Proteomics	41
2.3.2 Gel Based Proteomics	44
2.3.3 Gel Free Proteomics	45
2.3.4 Application of Proteomics in Disease Diagnosis	46
CHAPTER THREE: RESEARCH METHODOLOGY	49
3.1 Material	49
3.1.1 Raw Materials	49
3.1.2 Chemicals and Antibiotics	49
3.1.3 Apparatus	50
3.2 Methods	51
3.2.1 Preparation of Test Microorganism	51
3.2.2 Growth Curve Assay	51
3.2.3 Pellicle Assay	51
3.2.4 Biofilm Imaging	51
3.2.5 Resazurin Assay	52
3.2.6 Fourier Transform Infrared Spectroscopy	53
3.2.7 Whole-Cell Protein Extraction and Determination	53
3.2.8 Bradford Assay	53
3.2.9 One-Dimensional SDS-Polyacrylamide Gel Electrophoresis	54
3.2.10 Trypsin Digestion	54
3.2.11 Liquid Chromatography-Tandem Mass Spectrometry	55
3.2.12 Phosphoprotein Assay	55
3.2.13 Bioinformatics Analyses	56
3.2.14 Statistical Analyses	56
CHAPTER FOUR: RESULT AND DISCUSSIONS	58
4.1 Overview of Main Results	58