UNIVERSITI TEKNOLOGI MARA

DYNAMIC MECHANICAL AND FLEXURAL PROPERTIES OF GRANITE DUST FILLED ARENGA PINNATA (SUGAR PALM) FIBRE BASED HYBRID COMPOSITES

MUHAMMAD AIZUDDIN BIN MOHAMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Mechanical Engineering)

College of Engineering

February 2023

ABSTRACT

Natural fibre is one type of reinforcement materials obtained from natural resources that is decomposable, biodegradable, renewable, and cost effective. Among all natural fibres exist, Arenga Pinnata fibre (plant based) and basalt fibre (mineral based) are identified as an attractive option for reinforcement materials due to its good mechanical and thermal properties, abundantly available and high tolerate to harsh environmental conditions. However, limitation arise when this natural fibre is combined with thermosetting resin namely fibre reinforced polymer (FRP) composites in which this will be used as mechanical structure. This limitation is due to the mechanical properties of the thermoset resin itself that has inherently cross-linked structure thus resulting in brittle behaviour. This leads to relatively poor resistance to crack initiation and crack growth. To overcome this problem, in this study, the thermosetting polymer resin namely polyester was modified using dry fly granite dust (GD) waste of 63 um maximum size filler material. 1-5 wt% GD powder is incorporated into both, polyester composites and FRP composites. The mechanical properties of matrix resin filled granite dust reinforced with hybrid fibres were compared. The main objective of this study is to evaluate the effect of granite dust on dynamic mechanical and flexural properties of polyester composites and hybrid FRP composites. Four (4) different laminate composites systems were prepared using hand lay-up technique and vacuum bag process. These were WG/GCSM, WB/GCSM, WB/GCSM/A1 and WB/ACSM laminates systems. These polyester composites and hybrid FRP composite specimens were subjected to mechanical analysis (DMA) test under three-point bending mode, flexural test, and density test according to ASTM D7028, ASTM D7624 and ASTM D792 respectively. The modified polyester composites exhibited better in storing more energy in terms of storage modulus compared to unmodified polyester. The addition of granite dust up to 3 wt% improved the composite ability to store energy resulted by the limited polymer chain mobilization. Cured polyester with 3 wt% GD (PE/3GD) content exhibited the highest flexural properties among polyester composites which achieved flexural strength of 56.40±19.527 MPa and flexural modulus of 2.30±0.376 GPa. The study found that woven basalt/CSM glass composites exhibited the highest storage modulus at glassy state among all composites, while the lowest storage modulus was exhibited by woven basalt/CSM Arenga composites. The elasticity behaviour or ability of storing energy of FRP composites increases as the inclusion of granite dust increases up to 3 wt% that strengthens the FRP composites into becoming more brittle and stiffen The presence of CSM Arenga in the composite laminates of woven basalt/CSM Arenga/Al has improved the elasticity behaviour with the lowest damping factor (tan 6= 0.283) which made them the most elastic composites among others. The density values of composites were increased as the contents of granite dust increased in weight percentage. In terms of flexural behaviour, the addition of micro filler up to 3 wt% into the composite laminates contributed positive effect in flexural properties for all hybrid composites. It is identified that the effect of granite dust shows better properties in woven basalt/CSM glass composites with higher modulus and strength compared to other composites.

ACKNOWLEDGEMENT

In the name of Allah, the most gracious and the most merciful.

First and foremost, I would like to extend my deepest praises to Allah S.W.T who has given me the patient, strength, determination, and courage to successfully accomplish this Master of Science in Mechanical Engineering. This research is a collaborative effort of many people.

To begin with, my utmost thanks and gratitude goes to my supervisor, Prof. Dr. Aidah Jumahat for imparting me with her wealth of knowledge, valuable guidance and experience and the continuous support. I would also like to express my gratitude to post doctorate; DrNapisah Sapiai for their time, guidance and especially patience in assisting me to completing this thesis writing. My sincere thanks also go to all the technicians and staffs especially Mr. Nazeman, Mr. Azman, Mr. Rahimi and Mr. Suhairi for their continuous assistance in using the facilities for the experimental works.

Finally, and most importantly, I would like to thank my parent for her continuous prayers of my success in everything I have gotten myself into especially in this study. My appreciation and thanks are also dedicated to all my colleagues for their helpful insights, cooperation and stimulating comments. I would like to express my apology for any mistake and shortcoming in carrying out this project. To end, I am truly delighted as this research would bring benefits to others.

TABLE OF CONTENTS

CON		ii				
AUT		iii				
ABST	ГКАСТ		iv v			
ACK	NOWLEDGEMENT					
TAB	LE OF CONTENTS		vi ix			
LIST	OF TABLES					
LIST OF FIGURES LIST OF PLATES						
					LIST	
LIST	LIST OF ABBREVIATIONS					
CHA	PTER ONE INTRODUCTION		1			
1.1	Research Background					
1.2	Problem Statement		3			
1.3	Research Objectives		5			
1.4	Scope and Limitation of Study					
1.5	Significance of Study					
CHA	PTER TWO LITERATURE REVIEW		7			
2.1	Overview					
2.2		7				
	2.2.1 Synthetic Fibres		8			
	2.2.2 Natural Fibres		9			
	2.2.3 Hybrid Composites		14			
	2.2.4 Polymer Matrix		15			
	2.2.5 Matrix Toughening		17			
	2.2.6 Manufacturing Technique of FRP	Composites	19			
2.3	Previous Studies on FRP and Hybrid FRP Composites		22			
	2.3.1 Dynamic Mechanical Properties of FRP and Hy	ybrid FRP Comp	osites			

			31
	2.3.2	Flexural Properties of FRP and Hybrid FRP Composites	34
2.4	Applie	cation of FRP Composites	38
2.5	Concl	uding Remarks	38
СНА	PTER 7	THREE RESEARCH METHODOLOGY	40
3.1	Overv	iew	40
3.2	Raw M	Materials	42
	3.2.1	Glass Fibre	42
	3.2.2	Basalt Fibre	43
	3.2.3	Arenga Pinnata (Sugar Palm) Fibre	44
	3.2.4	Al Mesh	44
	3.2.5	Polyester Resin	45
	3.2.6	Granite Dust	46
3.3	Fabric	ation of the Composites	47
	3.3.1	Neat and Modified Polyester Composites	47
	3.3.2	Neat and Modified FRP Composites	48
	3.3.3	Designation of the Composites	49
3.4	Characterization		50
	3.4.1	Density	50
	3.4.2	Determination of Constituent Volume Fractions	51
	3.4.3	Dynamic Mechanical Analysis (DMA) Test	54
	3.4.4	Flexural Test	55
СНА	PTER I	FOUR RESULTS AND DISCUSSION	58
4.1	Overv	verview	
4.2	.2 Physical Properties of Composites Specimens		58
	4.2.1	Density Value of Polyester Polymer and FRP Composites	58
	4.2.2	Volume Fraction of Polyester Composites and FRP Composites	59
4.3	DMA Properties of Polyester Composites and FRP Composites		61
	4.3.1	Polyester Composites	61
	4.3.2	Woven Glass/CSM Glass (WG/GCSM) Composites Laminates	63
	4.3.3	Woven Basalt/CSM Glass (WB/GCSM) Composites Laminates	66