UNIVERSITI TEKNOLOGI MARA

PREPARATION AND CHARACTERIZATION OF MAGNETIC KAOLINITE NANOCOMPOSITE AS METHYLENE BLUE ADSORBENT IN AQUEOUS SOLUTION

IZZAN SALWANA BINTI IZMAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Chemistry)

Faculty of Applied Sciences

January 2023

ABSTRACT

Wastewater treatment of untreated dye effluent from industries is challenging due to requirement of adsorbent that is cost-effective, highly efficient, robust, and feasible to operate. In this study, magnetic kaolinite nanocomposite (MKN) derived from Malaysia's natural kaolinite clay mineral is proposed as an alternative adsorbent to treat dye contaminated water. Methylene blue (MB), a cationic azo dye, is used as the model of pollutant in this study. Three different clay:iron oxide mass ratio of magnetic kaolinite nanocomposite (denoted as MKN 1:1, MKN 2:1 and MKN 5:1) was successfully prepared in solution through the co-precipitation method. The pristine kaolinite (Kao), iron oxide (IO) and MKNs were characterized using techniques like Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Xray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analysis, vibrating sample magnetometer (VSM) and zeta potential measurement. Equilibrium adsorption study, kinetic and thermodynamic experiments were performed to understand the adsorption profile, mechanism, and spontaneity of reaction between MB and MKN. The stability of MKN is evaluated through metal leaching experiment and by comparing its structural, morphological, and magnetic characteristics with the spent MKN adsorbent (assigned as MKN1:1-MB). Findings shows that the BET surface area of MKN was enhanced up to 5-fold as compared to the pristine materials. MKN 1:1 has the highest magnetization properties (35.99 emu g⁻¹) that allows easy separation of MKN from reaction media via an external magnetic field. The MKN1:1 recorded an isoelectric point (IEP) of 5.3 with the highest adsorption capacity (18 mg/g) for MB removal, as compared to other MKNs and pristine kaolinite. Hence, MKN1:1 was chosen for the adsorption and stability studies. The optimum experimental condition for MB removal was achieved at pH = 6, reaction time = 240 min, and at 70 mg/L initial MB concentration. The adsorption data was best fitted to the Langmuir isotherm model (regression coefficient, $R^2 = 0.9840$) and in agreement with the pseudo-second order kinetic model ($R^2 = 0.9986$). The adsorption mechanism of MB towards MKN was governed by the electrostatic and specific chemical interaction. The adsorption process was spontaneous and exothermic in nature. No Fe leaching was detected even at pH 2. The spent MKN1:1 still preserve its magnetic strength and key morphological characteristics, that shows the high structural stability features of this nanocomposite. In conclusion, this study has demonstrated the potential of magnetic kaolinite nanocomposite as an environmental benign adsorbent for treating dye contaminated water.

ACKNOWLEDGEMENT

I am most grateful to my principal supervisor, Dr. Ruhaida Rusmin for the introducing me with this project, support me, help correct me where I am wrong by giving comments and suggestions which are helpful during the progress of this project until I finish it, and all the guidance she gave me towards the completion of this project. I am so thankful for that.

I also would like to acknowledge with much appreciation to my co-supervisor, Prof. Dr. Mohd Rafie Johan from University of Malaya for the advice and kind support.

Not to forget the family members who always give support and motivation towards completing this project. I also thank to all my fellow friends which have helped indirectly or directly during completing this project.

Lastly, I would like to thank the Ministry of Higher Education of Malaysia for the financial support of this research through the Fundamental Research Grant Scheme (Grant No: FRGS/1/2019/STG07/UITM/02/15). I am grateful to the Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya and the Imaging Centre (iMAGE), Faculty of Pharmacy, Universiti Teknologi MARA for the technical assistance in characterization analysis.

Izzan Salwana binti Izman

TABLE OF CONTENTS

CONI	FIRMA	TION BY PANEL OF EXAMINERS	ii
AUTH	IOR'S	DECLARATION	iii
ABST	RACT		iv
ACKN	NOWL	EDGEMENT	v
TABL	E OF	CONTENTS	vi
LIST	OF TA	BLES	X
LIST	OF FIG	GURES	xi
LIST	OF SY	MBOLS	xiv
LIST	OF AB	BREVIATIONS	XV
CHAI	PTER (DNE INTRODUCTION	1
1.1	Resear	rch Background	1
1.2	Proble	em statement	4
1.3	Objectives		5
1.4	Signifi	icant of study	5
CHAI	PTER 1	WO LITERATURE REVIEW	7
2.1	Water	pollution by synthetic dyes	7
	2.1.1	Dye pollution scenario in Malaysia	8
	2.1.2	Methylene blue as synthetic dye	8
2.2	Techn	iques to remove synthetic dyes from contaminated water	9
	2.2.1	Chemical precipitation method	10
	2.2.2	Membrane filtration method	10
	2.2.3	Adsorption method	10
		2.2.3.1 Adsorbent	11
2.3	Clay n	ninerals	12
	2.3.1	Kaolinite	13
		2.3.1.1 Structural features of kaolinite	14
2.4	Modif	ication of clays through the inclusion of metal oxide	15

	2.4.1	Iron oxide as magnetic nanoparticles (MNP)	15		
	2.4.2	Magnetic iron oxide-clay nanocomposite	18		
		2.4.2.1 Magnetic iron oxide-kaolinite clay nanocomposite	23		
2.5	Characterization of physicochemical properties and morphologies of magnetic				
	kaolin	ite nanocomposite	24		
	2.5.1	X-ray powder diffraction (XRD)	24		
	2.5.2	Surface functional groups: Fourier Transform Infrared Spectrosc	ору		
		(FTIR)	26		
	2.5.3	Surface morphologies through electron microscopy (SEM and TEM)27		
	2.5.4	Magnetic behaviour of magnetic clays using vibrating sam	nple		
		magnetization (VSM) measurement	29		
	2.5.5	Experimental parameters that influence the adsorption process.	30		
		2.5.5.1 Adsorption isotherm	33		
		2.5.5.2 Kinetics studies	34		
		2.5.5.3 Thermodynamics studies	35		
2.6	Stabil	ity of magnetic clay nanocomposite	36		
СНА	PTER	THREE RESEARCH METHODOLOGY	38		
СНА 3.1	PTER Appar	THREE RESEARCH METHODOLOGY	38 38		
CHA 3.1 3.2	APTER 7 Appar Instru	THREE RESEARCH METHODOLOGY atus ment	38 38 38		
CHA 3.1 3.2 3.3	PTER 7 Appar Instru Mater	THREE RESEARCH METHODOLOGY atus ment ial and reagents	 38 38 38 38 		
CHA 3.1 3.2 3.3 3.4	PTER 7 Appar Instru Mater Resea	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow	 38 38 38 38 39 		
CHA 3.1 3.2 3.3 3.4 3.5	PTER Appar Appar Instru Mater Resea Synth	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN)	 38 38 38 38 39 40 		
 CHA 3.1 3.2 3.3 3.4 3.5 	Appar Instrum Mater Resea Synthe 3.5.1	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO)	 38 38 38 39 40 40 		
CHA 3.1 3.2 3.3 3.4 3.5	Appar Instrut Mater Resea Synthe 3.5.1 3.5.2	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN)	 38 38 38 39 40 40 41 		
CHA 3.1 3.2 3.3 3.4 3.5 3.6	Appar Instrut Mater Resea Synth 3.5.1 3.5.2 Chara	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques	 38 38 38 39 40 40 41 43 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instrut Mater Resea Synth 3.5.1 3.5.2 Chara 3.6.1	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques Fourier Transform Infrared Spectroscopy (FTIR)	 38 38 38 39 40 40 41 43 44 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instruct Mater Resea Synthe 3.5.1 3.5.2 Chara 3.6.1 3.6.2	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques Fourier Transform Infrared Spectroscopy (FTIR) Solid state UV-Vis	 38 38 38 39 40 40 41 43 44 44 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instrue Mater Resea Synth 3.5.1 3.5.2 Chara 3.6.1 3.6.2 3.6.3	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques Fourier Transform Infrared Spectroscopy (FTIR) Solid state UV-Vis X-ray powder diffraction (XRD)	 38 38 38 39 40 40 41 43 44 44 44 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instru: Mater Resea Synth 3.5.1 3.5.2 Chara 3.6.1 3.6.2 3.6.3 3.6.4	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques Fourier Transform Infrared Spectroscopy (FTIR) Solid state UV-Vis X-ray powder diffraction (XRD) X-ray photoelectron spectroscopy (XPS)	 38 38 38 39 40 40 41 43 44 44 44 45 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instru: Mater Resea Synth 3.5.1 3.5.2 Chara 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) cterization techniques Fourier Transform Infrared Spectroscopy (FTIR) Solid state UV-Vis X-ray powder diffraction (XRD) X-ray photoelectron spectroscopy (XPS) Scanning electron microscopy (SEM) coupled with EDX	 38 38 38 39 40 40 41 43 44 44 45 45 		
 CHA 3.1 3.2 3.3 3.4 3.5 3.6 	Appar Instru: Mater Resea Synth 3.5.1 3.5.2 Chara 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6	THREE RESEARCH METHODOLOGY atus ment ial and reagents rch flow esis of iron oxide (IO) and magnetic kaolinite nanocomposite (MKN) Preparation of iron oxide (IO) Preparation of magnetic kaolinite nanocomposite (MKN) Cretrization techniques Fourier Transform Infrared Spectroscopy (FTIR) Solid state UV-Vis X-ray powder diffraction (XRD) X-ray photoelectron spectroscopy (XPS) Scanning electron microscopy (TEM)	 38 38 38 39 40 40 41 43 44 44 45 45 46 		