UNIVERSITI TEKNOLOGI MARA

PREPARATION OF ACTIVATED CARBON FROM PALM OIL FIBER ENCAPSULATED WITH BIOPOLYMER FOR DISPERSIVE MICRO-SOLID PHASE EXTRACTION COMBINE WITH LIQUID AND GAS CHROMATOGRAPHY TO DETERMINE PAHS IN TEA SAMPLES

NUR ZABIRAH BINTI ZABI

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science** (Chemistry)

Faculty of Applied Science

June 2023

ABSTRACT

Tea are the most widely consumed beverages in the world and without knowing the concentration of PAHs presence in the tea can be risky since PAHs can easily enter all the organ once it is consumed. PAHs are known for its genotoxic, mutagenic and carcinogenic effects to humans. Traces amount of polycyclic aromatic hydrocarbons (PAHs) in tea beverages have made their analyses difficult, thus sample preconcentration essential. This study investigated activated carbon (AC) prepared from palm oil empty fruit bunch (EFB) encapsulated in two different biopolymers which are Alginate-EFB-AC beads (Alg-EFB-AC beads) and Agarose-EFB-AC gels (Agr-EFB-AC gels) for the microextraction of PAHs from tea samples matrices prior to high performance liquid chromatography ultraviolet detection (HPLC/UV) and gas chromatography mass spectrometry detection (GC/MS), respectively. EFB-AC, Alg-EFB-AC beads, and Agr EFB-AC gels were successfully synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption analysis. Alg-EFB-AC beads and Agr-EFB-AC gels were utilized as sorbents in the dispersive micro-solid phase extraction (D-µ-SPE) of four PAHs which are naphthalene, fluorene, phenanthrene and pyrene. The optimized condition Alg-EFB-AC beads/D-µ-SPE method is ethyl acetate as desorption solvent, 20 minutes extraction time, 15 minutes desorption time and 50 mg of sorbent. Under the optimized condition the method provides good linearity $(r^2 \ge 0.9909)$ with good limit of detection (LODs) for analytes in tea samples in the range of 0.011 to 0.047 mg/L. Whereas, the optimized condition for Agr-EFB-AC gels/D-µ-SPE is ethyl acetate as desorption solvent, 23 minutes extraction time, 11 minutes desorption time and 0.16 %w/v AC. This method also provides satisfactory linearity $(r^2 \ge 0.9915)$ with good LODs (0.010-0.036 mg/L) under optimized condition. The D- μ -SPE proved a fruitful extraction technique with high relative recoveries in the range of 82.82 to 120.31% with RSD ranges from 1.08 to 7.49% and 85.15 to 120.33% with RSD ranges from 0.72 to 7.78% for Alg-EFB-AC beads and Agr-EFB-AC gels, respectively. The overall results proved that the proposed methods provide alternative approaches in sample preparation to solve analytical problems.

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah Azza wa Jalla for all the guidance, blessings and miracles that were given throughout the entire adventure of completing this long and challenging journey successfully. With His guidance I have learned to become patient in handling things in life. Besides that, He also had granted so many of my wishes to finish this project in good way. And so, thanks to Him for all the undeserved happiness and strength that He had given me along the way.

My blessings come in so many ways and of course I am deeply grateful to my supervisor, Dr Wan Nazihah. This research project will not be possible without countless help and guidance from my supervisor. Due to her patience and kindness in helping me with the project, it makes me more motivated to complete the project. Not to forget, her constant advice on working life makes me motivated to do my best and focus in my work next time. All the advices given will forever be cherished with all my heart. I hope that she will receive joy and contentment, as she had delivers me mine.

My gratitude goes to my co-supervisor Dr. Mohd Lokman Ibrahim and Dr. Mazhani Muhammad and laboratory assistants Mrs. Julia and Mrs. Rohani for their help and constant cooperation.

To my beloved parents whom I will always love, I will not be here and successful without your prayers for me. No amount of 'thank you's could explained how important you are to me. Thank you for being both my parents and my true best friends.

Finally, to the seniors and friends of mine in Analytical Instruments Laboratory at 'Bangunan Sarjana' that stick along with me through thick and thin, thank you for being there and guide me when I faced all kind of problems in the lab during my lab work. I hope you will be successful in life.

I am truly grateful for it all.

Nur Zabirah binti Zabi

TABLE OF CONTENTS

Page

1

CONFIRMATION BY PANEL EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii

CHAPTER ONE: INTRODUCTION

		1
1.1	Background of Study	1
1.2	Problem Statement	4
1.3	Objective of Study	6
1.4	Research Question	6
1.5	Significance of Study	7
1.6	Scope of Study	8

CHAP	TER T	WO: LITERATURE REVIEW	9
2.1	Polycyclic Aromatic Hydrocarbons		
	2.1.1	Source of PAHs	10
	2.1.2	Extraction of PAHs in Food Samples	11
2.2 Dispersive Solid Phase (DSPE) Techniques		rsive Solid Phase (DSPE) Techniques	13
	2.2.1	Analysis of Organic Pollutants in Food Samples via D-µ- SPE with Various Solid Sorbents	15

2.3	Activa	ated Carbon	18
	2.3.1	Activated Carbon Produced from Different Agricultural Wastes	19
	2.3.2	Activated Carbon from Agricultural Wastes as Potential Adsorbents	23
2.4	Palm	Oil Biomass	30
	2.4.1	Activated Carbon Derived from Palm Oil Empty Fruit Bunch (EFB) as an Adsorbent	31
2.5	Algina	ate and Agarose Biopolymers	33
CHAP	TER T	HREE: METHODOLOGY	37
3.1	Chem	icals and Materials	37
3.2	Prepar	ration of Activated Carbon from Palm Oil EFB	37
	3.2.1	Preparation of Alg-EFB-AC Beads	39
	3.2.2	Preparation of Agarose EFB-AC Gel	40
3.3	•	cal and Chemical Characterization of Activated Carbon, Alg-	40
		AC Beads and Agarose-EFB- AC Gel FTIR and FTIR-ATR Analysis of EFB-AC, Alg-EFB-AC Beads, Agr-EFB-AC Gel, Sodium Alginate and Agarose Gel	38
	3.3.2		41
	3.3.3		41
	3.3.4	Point of Zero Charge of EFB-AC	42
3.4	Chron	natographic Conditions	43
	3.4.1	High Performance Liquid Chromatography/Ultraviolet Detector	43
	3.4.2	Gas Chromatography/Mass Spectrometer Detector	43
3.5	Prepar	ration of Tea Sample	44
3.6	Disper	rsive-µ-Solid Phase Extraction Method	44
3.7	Optim	ization of Parameters for D-µ-SPE Performance	45
	3.6.1	One-Factor-at-A-Time	45
	3.6.2	Response Surface Methodology	46
3.8	Applic	cation to real samples	46
3.9	Metho	od Validation	46
	3.9.1	Linearity	47
	3.9.2	Limit of Detection Limit of Quantification and Enrichment	47