EUTROPHICATION STATUS OF THE INANAM-LIKAS RIVER BASIN (ILRB), KOTA KINABALU, SABAH

RASS ADIRA AYUNNI BINTI JULKEPLI

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2018

ACKNOWLEDGEMENTS

In The Name of Allah, Most Gracious, Most Merciful Assalamualaikum Warahmatullahi wabarakatuh,

Alhamdulillah to Allah S.W.T that finally, with His blessings and permission I am able to complete this final year project. I would like to express my gratitude especially to my supervisor, Mr. Ajimi Bin Haji Jawan, for all the help, support, comments and guidance in helping me to finish this final year project report. Next, I would like to extend my genuine thanks to Dr. Patricia Natin, my second checker and all other lecturers that provided me with comments and advice to improve my work.

Also not to be forgotten, I would like to express my sincere appreciation to my parents Hj. Julkepli bin Hj. Abas and Dg. Rosnah binti Dulamit, for their encouragement and financial assistance which had helped me to go through all the obstacles and challenges throughout this research study.

Last but not least, thank you for all of my friends especially my team members under the supervision of Mr. Ajimi Bin Hj Jawan, Noreen Binti Nordin, Umi Zubaidah Binti Seterik and Marysia Thecla Denisius for the continuous help and support in completing my final year project report.

Rass Adira Ayunni Binti Julkepli

TABLE OF CONTENTS

		Page		
ACH	iii			
TAE	TABLE OF CONTENTS			
LIS	Г OF TABLES	vi		
LIS	T OF FIGURES	vii		
LIST OF ABBREVIATIONS ABSTRACT				
				ARS
ADS		~		
CH	APTER 1 INTRODUCTION			
1.1	Background	1		
1.2	Problem statement	3		
1.3	Significance of study	4		
	1.3.1 Economic	4		
	1.3.2 Community	5		
	1.3.3 Academic	5		
1.4	Objectives of study	5		
1.5	Scope of study	6		
CH	APTER 2 LITERATURE REVIEW			
2.1	Introduction to eutrophication	7		
	2.1.1 Negative effect of eutrophication	9		
	2.1.1.1 Limits river capacity	10		
	2.1.1.2 Limits access to safe drinking water	11		
	2.1.1.3 Degradation of ecosystem	12		
	2.1.2 Eutrophication issues	12		

	4.1.4	Lutophication issues	1 4
		2.1.2.1 Eutrophication issues at global level	13
		2.1.2.2 Eutrophication issue in Malaysia	14
2	Threa	ts to river	15
	2.2.1	Natural factor	17
	2.2.2	Application of fertilizer in agricultural activities	18
	2.2.3	Rapid modernization	19
2.3	Troph	ic State Index (TSI) parameters	20
	2.3.1	Chlorophyll a (Chl a)	21
	2.3.2	Transparency Secchi Disk (SD)	21
2.4	Classi	ification of eutrophication	21

2.4 Classification of eutrophication

CHAPTER 3 METHODOLOGY

3.1	Materials	24
	3.1.1 Chemicals	24

			24	
2.2	3.1.2	Apparatus	24	
3.2	Metho	ds Compliance ite	25	
	3.2.1	Sampling site	23	
2.2	J.Z.Z	Sample conection	33	
3.3	1 Toph		24	
	3.3.1	Chlorophyll a (Chl a)	25	
	3.3.2	Phasehouse	26	
2.4	3.3.3 Data a	Phosphorus	30	
5.4		News lite test	20	
	3.4.1	Normality test	30	
	3.4.2	Spearman Correlation Coefficient	38	
	5.4.5	Spearman correlation coefficient	50	
		Less of the sevent-sources good the factors the		
СНА	PTER	4 RESULT AND DISCUSSION		
4.1	TSLV	alue in ILRB by using chlorophyll a (Chl a) and	40	
	transr	parency Secchi Disk (SD)		
4.2	Eutro	phication status of ILRB	43	
4.3	The ir	teraction between TSI parameters on different types	47	
	oflan	d used		
4.4	The correlation coefficient of TSI parameters on different			
	types	of land used		
CIL	DTEE	CONCLUSION AND DECOMENDATIONS		
CHA	Cond	S CONCLUSION AND RECOMENDATIONS	52	
5.1	Popot	usion	53	
5.2	Recoi	Innendation	54	
CIT	ED RE	FERENCES	56	
APP	APPENDICES			
CUH	RICU	LUM VITAE	70	

ABSTRACT

EUTROPHICATION STATUS OF THE INANAM-LIKAS RIVER BASIN (ILRB), KOTA KINABALU, SABAH

Freshwater ecosystem is a precious asset and support vital wildlife habitat such as fish, plants and animals. Healthy river can easily be identified by a diverse population of fish and mussels. Therefore, the evaluation of eutrophication status at different types of land use is important to see the status of the current river. In this study, the Carlson's Trophic State Index was measured by using Chlorophyll a and the Transparency as indicator to determine the water quality of the river. Besides, the Phosphorus (P) concentration along the river basin also been monitored to see the relationship between Phosphorus concentration, TSI Chlorophyll a, Phosphorus concentration and TSI Transparency. There are 6 stations with different types of land used that were chosen in the Inanam Likas River Basin (ILRB) with three replicates for each station. The sampling was conducted from January 2018 until May 2018 and a three weeks interval for each sampling. The values for Chlorophyll a was obtained by using the Hydrolab Multiparameter Model DS5X and the Secchi disk was used to determine the transparency. The preservation method for phosphorus concentration was recommended by APHA (2005). Overall, the status of Inanam-Likas river basin was in eutrophic class; where tourism area, poultry, oil plantation and villagers were classified as eutrophic, while the industrial and recreational area were classified as hypertrophic. Kruskal-Wallis test showed that there was a significant difference between different types of land used with TSI Transparency (KW \varkappa^2 = 14.51, df = 5, p < 0.01) and significant difference for the TSI Chl a (KW \varkappa^2 = 16.25, df = 5, p < 0.01). Meanwhile, the Spearman's rho correlation showed positive correlation between TSI Chl a and Phosphorus concentration (N = 18, r = 0.646, p < 0.01) and between TSI Transparency and Phosphorus concentration (N = 18, r = 0.624, p < 0.01). As a conclusion, the effects of eutrophication to the river are sedimentation which in turn will cause primary succession. This condition will limit the river's capacity and limit access to safe drinking water.