QUALITY ASSESSMENT OF 3D MODEL GENERATED USING VARIOUS GCP DISTRIBUTION IN SMARTPHONE ACQUIRED IMAGE

NUR AMIRAH BINTI MOHD YUSOFF

2019230634

COLLEGE OF BUILT ENVIRONMENT UNIVERSITI TEKNOLOGI MARA PERLIS

AUGUST 202

QUALITY ASSESSMENT OF 3D MODEL GENERATED USING VARIOUS GCP DISTRIBUTION IN SMARTPHONE ACQUIRED IMAGE

NUR AMIRAH BINTI MOHD YUSOFF 2019230634

Thesis submitted to the Universiti Teknologi MARA Malaysia In partial fulfillment for the award of the degree of the Bachelor of Surveying Science and Geomatics (Honours)

AUGUST 2023

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Amirah Binti Mohd Yusoff	
Student I.D. No.	:	2019230634	
Programme	:	Bachelor of Surveying Science and Geomatics (Honours) – AP220	
Faculty	:	College of Built Environment	
Choose an item.	:	Quality Assessment of 3D Model Generated Using Various GCP Distribution on Smartphone Acquired Image	
Signature of Student	:		
Date	:	August 2023	

ABSTRACT

Smartphone have been widely used in various fields. The use of smartphone has also been used in the field of photogrammetry in producing 3D modelling of structure building and objects. However, archaeologist have been introduced in using this method for record the artifacts as reference for architectural purposes, dimensions and heights. in archaeological. However, in this research the method used are smartphone photogrammetry applied in documentation of grave. Therefore, a study should be conducted to find out the potential of using smartphone in documentation the artifacts. The aim of this study is to assess the potential of smartphone photogrammetry using Ground Control Point (GCP) in archaeological documentation. So, to achieve the aim is distribute the pattern of GCP and Check Points. The second objective is to compare the accuracy measurements of distribute pattern GCP. The GCPS were tested in two scenarios of pattern distribution GCPS. It tested in middle distribution and homogeneous distribution. Each scenario was initiated with 30 GCPS and Verification points (VP) is 30 VPS. In the study, 3D model of grave is generating to be compare the accuracy of pattern distribution GCPS. So, from this research GCP can be identified the effect from the GCPS distribution. Therefore, it is a recommendation to do further research on using smartphone as a new platform in photogrammetry in different of distance from the object for accurate measurement.

Keywords: Ground Control Point (GCP), Smartphone, Close-Range Photogrammetry and 3D Model

TABLE OF CONTENTS

			Page
CON	FIRMA	TION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION			iii
ABSTRACT			iv
ACK	NOWL	EDGEMENT	v
TABLE OF CONTENTS LIST OF TABLES			vi viii
LIST	OF SY	MBOLS	Х
CILA	DTED	ONE INTRODUCTION	1
Сп А 1.1	Resea	1	
1.1	Proble	3	
1.2	Objec	3	
1.5 1.4	•	3	
1.4	U	icance of Study Digital Close-Range Photogrammetry	4
	1.4.1	Smartphone Camera	6
СНА	DTFD '	FWO LITERATURE REVIEW	8
2.1 Introduction			8
2.1		ge Documentation	8
2.2	2.2.1	Technique For Heritage Documentation	11
2.3		ad Control Points (GCP)	11
2.3			13
2.7	2.4.1	Terrestrial Laser Scanning	13
	2.4.1	Smartphone	14
	2.4.3	LIDAR	15
	2.4.4	Camera	18