ROCK SLOPE MONITORING USING LOW ALTITUDE REMOTE SENSING (LARS) METHOD

FASHIHAH BINTI MAHUSIN

2019627688

COLLEGE OF BUILT ENVIRONMENT UNIVERSITI TEKNOLOGI MARA PERLIS

AUGUST 2023

UNIVERSITI TEKNOLOGI MARA

ROCK SLOPE MONITORING USING LOW ALTITUDE REMOTE SENSING (LARS) METHOD

FASHIHAH BINTI MAHUSIN

Thesis submitted in fulfillment of the requirements for the degree of BACHELOR OF SURVEYING SCIENCE AND GEOMATICS (HONS)

COLLEGE OF BUILT ENVIRONMENT CENTRE OF STUDIES FOR SURVEYING SCIENCE AND GEOMATICS

AUGUST 2023

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Fashihah binti Mahusin
Student I.D. No.	:	2019627688
Programme	:	Bachelor of Surveying Science and Geomatics (HONS) – AP220
Faculty	:	College of Built Environment
Thesis	:	Rock Slope Monitoring using Low Altitude Remote Sensing (LARS) Method
Signature of Student	:	
Date	:	August 2023

ABSTRACT

The Unmanned Aerial Vehicle or simply called drone are a hot topic that comprising a diverse aspect including technology, privacy right and even war and peace. Currently, remote sensing sensors are able to attached to UAV platform where it is suitable in monitoring and mapping the slope features. The stability of the rock slope is analyze using the vegetation index which is Normalized Differences Vegetation Index (NDVI) and the water index with the Normalized Difference Water Index (NDWI) for the land type features. NDVI has been used to analyze the healthiness of the vegetation where the healthier vegetation has a stronger root which is useful in stabilizing the slope and NDWI has the ability to detect the presence of the water where at the higher index NDWI potentially be less stable as the water seep through the crack line of the rock surface. To achieve the aims of this study, the objectives of this study is to generate spectral indices map using drone based multispectral images and to analyses the stability of rock slope by NDVI and NDWI techniques. The study area is carried out at Toll Plaza Bukit Merah, Semanggol, Perak and to accomplish the objective of this study, Agisoft Metashape and ENVI software has been used. This study will understand the techniques used is significant to be used as an indicator to investigate the rock slope failure based on the low-cost techniques and rapid data information.

TABLE OF CONTENTS

CONF	IRMATION BY PANEL OF EXAMINERS	i
AUTH	OR'S DECLARATION	ii
ABST	RACT	iii
ACKN	OWLEDEGMENT	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF ABBREVATION	Х
СНАР	TER ONE INTRODUCTION	1
1.1.	Research Background	1
1.2.	Problem Statement	3
1.3.	Objectives	5
1.5.	Significance of Study	6
СНАР	TER TWO LITERATURE REVIEW	9
2.1	Introduction	9
2.3	Remote Sensing and Unmanned Aerial Vehicle (UAV)	20
2.4	Low Altitude Remote Sensing (LARS)	20
2.5 Wate	Normalized Difference Vegetation Index (NDVI) and Norma er Index (NDWI)	alized Difference 21
CHAPTER THREE RESEARCH METHODOLOGY		
3.1	Introduction	25
3.2	Dataset	27
3.3	Data Processing	27
3.4	Data Analysis	31
CHAPTER FOUR RESULT AND ANALYSIS		35
4.1	Introduction	35
4.2	Orthophoto of rock slope at Bukit Merah	35
4.3	Normalize Difference Vegetation Index (NDVI)	36
4.4	Normalized Difference Water Index (NDWI)	41
4.5	Correlation	45