OPTIMIZATION FOR NANOENCAPSULATION OF VITAMIN C USING NEWLY SYNTHESIZED ALGINATE AND CHITOSAN VIA RESPONSE SURFACE METHODOLOGY (RSM)

NOR FAZILAH BT CHE PAUZI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2023

ABSTRACT

Alginate-chitosan matrix is a beneficial component as the shell matrix in encapsulation technology. The two polymeric molecules have many advantages namely nontoxicity, biodegradable, mucoadhesive, and environmentally friendly. Recently, many industrial sectors are increasingly interested in the field of nanotechnology. Nanoencapsulation is a novel and practical branch of nanotechnology. It is the technology of packing nanoparticles in many forms (solid, liquid, gas). Encapsulation of bioactive compounds are the most common practice in pharmaceutical and food industry. Active compounds can behave abnormally when placed in certain conditions. It is affected by variation of temperature, pH, or ionic strength. Therefore, it is important that it stabilizes before hitting the target site. One of the commonly utilized bioactive compounds was vitamin C. In this study, encapsulation of vitamin C using alginate-chitosan matrix as the shell was performed. The optimization of the encapsulation was evaluated using response surface methodology. The experimental design approach is based on central composite design (CCD) with the consideration of three independent variables which are sodium alginate concentration, chitosan concentration, and molarity of calcium chloride (CaCl₂) and two response factors which are vitamin C control and vitamin C free. The optimized condition of capsulated vitamin C undergone leachability test to determine its validity. The suggested optimum condition obtained was 0.2 (w/v)% sodium alginate, 0.526 (w/v)% chitosan, and 0.2M Calcium Chloride.

Table of Contents

ABS	TRACT	i
ACKNOWLEDGEMENT		
LIST OF TABLES		V
LIST OF FIGURES		vi
LIST OF PLATES		vii
LIST OF SYMBOLS		viii
LIST OF ABBREVIATIONS		ix
CHAPTER ONE		
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Research Questions	6
1.4	Objectives	6
1.5	Significance of Study	6
CHAPTER TWO		8
2.1	Response Surface Methodology (RSM)	8
2.2	Encapsulation	10
2.3	Chitosan	12
2.4	Sodium Alginate	15
2.5	Uv-Vis Spectrophotometer	17
CHAPTER THREE		18
3.1	Materials and Chemicals	18
3.2 Preparation of Polysaccharides		18
3.3	Preparation of Calcium Chloride (CaCl2) and 1% Acetic Acid	19
3.4	Preliminary Study of Biofilm	20
3.4	Encapsulation of Vitamin C	20
3.5	Determination of Encapsulation Yield (EY%)	21
3.6	Determination of vitamin C control	22
3.7	Determination of Vitamin C free	22

3.8	Optimization of Vitamin C Encapsulation	22
3.9	Leachability Test	23
CHAPTER FOUR		24
4.1	Extraction of synthesized alginate and chitosan	24
4.2	FTIR Analysis of Chitosan and Alginate	25
4.3	Preliminary Study of Biofilm	26
4.4	Preliminary Study of Encapsulation	29
4.3	FTIR Characteristics of Biofilm and Capsules	31
4.4	Response Surface Methodology (RSM)	36
4.5	Encapsulation Yield Percentage (EY%)	40
4.6	Central Composite Design (CCD) Analysis	41
4.7	Leachability Test	45
CHAPTER 5		47
CON	CLUSIONS AND RECOMMENDATIONS	47
REFI	REFERENCES	
APPENDICES		53
CURRICULUM VITAE		54

LIST OF TABLES

Table	Caption	Page
2.1	Design of Experiments for Common Optimization Study.	14-15
4.1	Extraction of synthesized alginate and chitosan	20
4.2	Preliminary Study of Biofilm	24
4.3	Preliminary Study of Encapsulation	26
4.4	Functional groups presence in Chitosan Biofilm	29
4.5	Functional groups presence in Sodium Alginate Biofilm	30
4.6	Functional groups presence in Chitosan + Sodium Alginate	31
	Biofilm	
4.7	Functional groups presence in Chitosan + Sodium Alginate	32
	Nano-capsules	
4.8	Matrix of Experimental Runs for Central Composite Design	33
	(CCRD)	
4.9	ANOVA for VC Control	34
4.10	ANOVA for VC Free	35
4.11	Encapsulation Yield Percentage	36
`4.12	Table of Constraint	37
4.13	Table of Solutions	38