A COMPARISON STUDY BETWEEN PHOTOCATALYSIS & PHOTOELECTROCHEMICAL PROCESS IN DEGRADING REACTIVE RED 4 DYE

TENGKU NURUL HUSNA BINTI TENGKU MUHAMAD ROZI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management in the Faculty of Applied Sciences University Teknologi MARA

FEBRUARY 2023

This Final Year Project Report entitled "A Comparison Study between Photocatalysis & Photoelectrochemical Process in Degrading Reactive Red 4 Dye" was submitted by Tengku Nurul Husna Binti Tengku Muhamad Rozi in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences and was approved by

> Dr. Wan Izhan Nawawi Wan Ismail Supervisor Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

> > Dr. Zuliahani Ahmad Head Centre of Studies Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

> > Dr. Siti Nurlia Ali Coordinator Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: <u>13th February 2023</u>

ABSTRACT

A COMPARISON STUDY BETWEEN PHOTOCATALYSIS & PHOTOELECTROCHEMICAL PROCESS IN DEGRADING REACTIVE RED 4 DYE

Wastewater releases from the industry contribute to a major environmental issues. Several studies have reported that advanced oxidation process such as photocatalysis degradation (PCD) and photoelectrochemical degradation (PECD) have huge potential to reduce the problem by degrading dyes. Yet, the comparison of those techniques to determine the most suitable wastewater treatment method was very limited. In this study, a comparison of those techniques was observed under degradation of reactive red 4 (RR4), methylene blue (MB) and methyl orange (MO) dyes. TiO₂/ENR/PVC selected as the photocatalyst prepared by the dipcoating method. PCD and PECD process with TiO₂/ENR/PVC for degradation of RR4, MB, and MO were carried out. Several characterizations such as scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis, and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis were conducted to support the results. Results indicated that PECD was able to efficiently degrade the RR4 and other dyes compare to PCD due to its ability to increase the electron-hole separation to increase the photocatalytic activities through external voltage. PECD of RR4 have the highest degradation rate (k-value) with 0.2215 min⁻¹ while PCD was *ca*. 0.0036 min⁻¹. The MB and MO were also showing different behavior during PCD and PECD due to their different ionic charges where the degradation rate for PECD and PCD of MB were 0.3513 and 0.0075 min⁻¹ respectively. Same goes to MO with the k-value of 0.0989 and 0.0065 min⁻¹ for PECD and PCD respectively. MB as cationic dye was efficiently degraded under every process due to its higher potential to adsorp on the surface of photocatalyst. However, due to MB ability to react with the metal electrode, PECD of MB produce higher concentration of metal electrode due to its dissolution into dye solution. The result from this study can be used for further studies to obtain the best method that will be employed in wastewater treatment.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS	Х
LIST OF ABBREVIATIONS	xi

CHAPTER 1 INTRODUCTION

1.1 Background of study	1
1.2 Problem statement	3
1.3 Significance of study	4
1.4 Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1 Photocatalysis	6
2.1.1 Mechanism of photocatalysis	7
2.1.2 Photocatalysis degradation	7
2.1.3 Mechanism of photocatalysis degradation	8
2.1.4 Factors affecting the photocatalysis degradation	9
2.2 Photoelectrochemical process	10
2.2.1 Photoelectrochemical degradation	12
2.2.2 Factors affecting the photoelectrochemical degradation	14
2.3 Electrocoagulation process	14
2.4 Types of photocatalyst	17
2.4.1 Titanium dioxide	18
2.4.2 Titanium dioxide as a photocatalyst	19
2.4.3 Titanium dioxide improvement as photocatalyst	20
2.5 Dye	22
2.5.1 Reactive red 4 dye	23
2.5.2 Methylene blue dye	25
2.5.3 Methyl orange dye	27

CHAPTER 3 METHODOLOGY

3.1 Materials	28
3.1.1 Chemicals	28
3.1.2 Apparatus	28
3.1.3 Instrument	29
3.2 Preparations of immobilized P-25TiO2/ENR/PVC	29

3.2.1 Preparations of P-25TiO2/ENR/PVC solution	30
3.2.2 Immobilization of P-25TiO2/ENR/PVC	30
3.3 Degradation of dyes	31
3.3.1 Preparation of dyes solution	31
3.3.2 Photocatalysis	32
3.3.3 Photoelectrochemical	33
3.3.4 Electrocoagulation	33
3.4 Characterization of P-25TiO2/ENR/PVC	34
3.5 Inductively Coupled Plasma-Optical Emission Spectrometry analysis	35

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Characterization study of photocatalyst	36
4.1.1 X-ray diffraction analysis	36
4.1.2 Scanning Electron Microscope analysis	38
4.1.3 Fourier Transform Infrared spectroscopy	40
4.2 Photodegradation of reactive red 4 dye	41
4.3 Photodegradation of anionic and cationic dye	44
4.4 Study on byproduct of photoelectrochemical process	49

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	52
5.2 Recommendations	53

CITED REFERENCES	54
APPENDICES	60
GANTT CHART	65
CURRICULUM VITAE	66