A COMPARISON STUDY OF THE GRAPHITIC CARBON NITRIDE COUPLED TIO₂ PREPARED BY USING TITANIA PRECURSOR AND DEGUSSA P25 TIO₂ UNDER PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE AND REACTIVE RED 4 DYES.

ZAWANI BINTI AB WAHAB

Final Year Project Report Submitted in

Partial Fulfilment of the Requirements for the

Degree of Bachelor of Science (Hons.) Chemistry with Management in the Faculty of Applied Sciences

Universiti Teknologi MARA

JANUARY 2023

This Final Year Project entitled "A comparison study of the graphitic carbon nitride coupled TiO_2 by using titania precursor and Degussa P25 TiO_2 under photocatalytic degradation of methylene blue and reactive red 4 dyes" was submitted by Zawani binti Ab Wahab in partial fulfilment of the requirements for the Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences, and was approved by

> Dr Wan Izhan Nawawi bin Wan Ismail Supervisor B. Sc. (Hons.) Chemistry with Management Universiti Teknologi MARA 02600 Arau, Perlis

Dr Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Chemistry with Management Universiti Teknologi MARA 02600 Arau, Perlis Dr Zuliahani binti Ahmad Head of Programme B. Sc. (Hons.) Chemistry with

Universiti Teknologi MARA 02600 Arau, Perlis

Date: 16 FEBRUARY 2023

ABSTRACT

A COMPARISON STUDY OF THE GRAPHITIC CARBON NITRIDE COUPLED TIO₂ PREPARED BY USING TITANIA PRECURSOR AND DEGUSSA P25 TIO₂ UNDER PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE AND REACTIVE RED 4 DYES.

In this study, two different preparations of graphitic carbon nitride / titanium dioxide (g-C₃N₄/TiO₂) photocatalysts were prepared by using two different titania precursors (tetrabutyl ortotitanate (TBOT) and Degussa P25) with 1, 2, and 5 wt% of graphitic carbon nitride using in situ sol gel hydrothermal method. The photocatalytic activity of prepared samples was measured under methylene blue (MB) and reactive red 4 (RR4) dyes using 55-Watt fluorescent lamp. 2 wt.% g-C₃N₄ incorporated with TiO₂ using TBOT as precursor (2% g-C₃N₄/TiO₂) gave the highest photocatalytic degradation rates among the other photocatalysts under MB and RR4 dyes at 0.0321 and 0.0651 cm⁻¹, respectively. While, 2 wt.% g-C₃N₄ incorporated with TiO₂ using P25 as precursor (2% g-C₃N₄/P25) gave the highest photocatalytic degradation rates among the other photocatalysts under MB and RR4 dyes at 0.0337 and 0.0553 cm⁻¹ respectively. This study shows that two different optimum k values were observed under two types of sample's precursors. The g-C₃N₄/TiO₂ gave high k value in RR4 dye while g-C₃N₄/P25 give high k value in MB dye. The different photocatalytic performance is due to the differential point of zero charge (pzc) analysis were ca. 4.6 and 6.2 for 2% g-C₃N₄/TiO₂ and 2%g-C₃N₄/P25, respectively. The FTIR and XRD analyses showed that the samples exhibit all the peaks for $g-C_3N_4$ and TiO₂ which indicates the presence both compounds in the prepared samples. The morphology of the prepared samples was elucidated via FESEM shows the graphitic carbon nitride successfully dispersed on the TiO₂. It shows that the 2% composite of $g-C_3N_4/TiO_2$ has smallest particle size and also largest specific surface are which can leads to the increasing of dispersion and diffusion of electron between photocatalyst and dyes.

TABLE OF CONTENT

ABSTH	RACT	i
ACKNOWLEDGEMENTS		iii
TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS		iv
		vii
		viii
		x
LIST OF ABBREVIATIONS		xi
CHAP '	TER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	4
1.3	Research Questions	6
1.4	Objectives of study	6
1.5	Significance of study	7
1.6	Expected Output/Outcomes/Implications	8
CHAPTER 2 LITERATURE REVIEW		10
2.1	Organic Pollutants	10
2.2	Advanced Oxidation Process (AOP)	11
2.3	Photocatalyis	13
2.4	TiO ₂ Semiconductor Photocatalyst	14
2.5	Mechanism of TiO ₂ photoactivity	18
2.6	Modification of TiO ₂ photocatalyst	21
2.7	Graphitic carbon nitride (g-C ₃ N ₄)	23
2.8	G-C ₃ N ₄ /TiO ₂ composite photocatalyst	23
2.9	TiO ₂ from titania precursor	25
2.10	TiO ₂ from Degussa P25	27

2.11	Dyes	28
2.12	Methylene Blue Dye	
2.13	Photocatalysis Degradation of MB dye.	31
2.14	Immobilized TiO ₂ in degrading MB dye.	32
2.15	Reactive Red 4 Dye (RR4)	33
2.16	Point Zero Charge	35
СНАРТ	ER 3 METHODOLOGY	38
3.1	Chemicals	38
3.2	Apparatus	
3.3	Instrumentation 3	
3.4	Sample Preparation	39
3.4	1 Preparation of graphitic carbon nitride	39
3.4. hyd	2 Preparation TiO ₂ sample using titania precursor by in situ sol-gel rothermal method	40
3.4. gel	3 Preparation of $g-C_3N_4$ coupled TiO ₂ using titania precursor by in s hydrothermal method	situ sol 40
3.5	Photocatalytic study of samples under photodegradation of MB dye.	41
3.6	Determination of Point Zero Charge	43
3.7	Characterization study	43
3.7.	1 Field Emission Scanning Electron Microscopy (FESEM)	44
3.7	1 Fourier Transform Infrared Spectroscopy (FTIR)	44
3.7.	1 X-ray Diffraction (XRD)	45
СНАРТ	ER 4 RESULTS AND DISCUSSION	46
4.1	Photocatalytic degradation study and optimization study	46
4.1	1 Photocatalytic degradation study of unmodified samples	49
4.1	1 Photocatalytic study of modified sample and optimization study	52
4.1. tita	1 The comparison study of the $g-C_3N_4/TiO_2$ composites prepared by nia precursor (TBOT) and Degussa P25	using vusing
4.2	Point Zero Charge Study of the g-C ₃ N ₄ /TiO ₂ (TBOT 2%)	58
4.3 C	naracterization study of unmodified and modified TiO ₂	64