UNIVERSITI TEKNOLOGI MARA

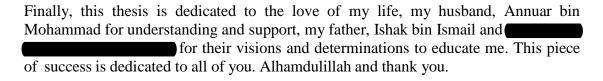
ANTIBACTERIAL, ANTIOXIDANT AND ATR-FTIR ANALYSIS OF TRIGONA HONEY FROM WEST COAST OF PENINSULAR MALAYSIA

FATIN NADIAH BINTI ISHAK

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science in Applied Science**

Faculty of Applied Science

October 2018


ABSTRACT

Honey is a natural nutritional product produced from nectar. It has been shown to have immunological, antibacterial, antifungal, anti-inflammatory and antioxidant properties. This study set out with the aim to study the antibacterial activities of Trigona honey in West Coast of Peninsular Malaysia, to determine the antioxidant activities of Trigona honey based on their total phenolic content and colour intensity, and also to study on the chemical bonds present using ATR-FTIR. The findings on antibacterial activities of Trigona honey show that P. aeruginosa was most susceptible to Trigona honey especially honey from Perak, Melaka and Johor 2, while B. cereus was identified to be resistant against all of the Trigona honey. As for the antioxidant activities of the Trigona honey, the total phenolic content of the Trigona honey was ranged from 786.64 to 2691.89 GAE mg/100g, while the colour intensity of the Trigona honey was ranged from 0.31 to 1.08 mAU. Moreover, the pH value of the Trigona honey is acidic where the range are within 2.56 to 3.83, and the ATR-FTIR analysis shows that Trigona honey contains phenolic, amino acids, flavonoids, stilbenes, fatty acids, carboxylic acids, steroids, chemical skeleton of sugar, water, glucose, fructose, carbohydrates, carotenes, organic acids, flavanols, phenols and polyphenols. In conclusion, several parameters have been measured to study the antibacterial and antioxidant activities, and also the chemical bonds present in the Trigona honey from West Coast of Peninsular Malaysia. Some recommendations have been identified for future research.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah for giving me the opportunity to embark on my master and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Madam Ernie Eileen binti Rizlan Ross, and my co-supervisor, Dr. Shanti a/p K. Navaratnam. Thank you for the support, patience and ideas in assisting me with this project. I also would like to express my gratitude to the staff of the Universiti Teknologi MARA for providing the facilities, knowledge and assistance.

My appreciation goes to the beekeepers of Trigona honey in West Coast of Peninsular Malaysia who provided the honey and assistance during sampling. Special thanks to my colleagues and friends for helping me with this project.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Significant of Study	4
1.4 Objectives of the Study	4
1.5 Scope and Limitation	4
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Bees and Honey	6
2.1.1 <i>Apis</i> spp.	7
2.1.2 Trigona Bee	8
2.1.3 Types of Honey	10
2.2 Chemical Composition of Honey	10
2.3 Biological Activity of Honey	15
2.3.1 Antimicrobial Activity	15
2.3.2 Antioxidant Activity	18
2.3.3 Other Effects	21
2.4 Storage of Honey	22
2.5 Pathogenic Bacteria	23

2.5.1 Escherichia coli	24
2.5.2 Salmonella Typhimurium	24
2.5.3 Pseudomonas aeruginosa	25
2.5.4 Bacillus cereus	25
2.5.5 Staphylococcus aureus	25
CHAPTER THREE: MATERIAL AND METHOD	27
3.1 Material	27
3.1.1 Raw Material	27
3.1.2 Chemicals and Materials	29
3.1.3 Apparatus and Instruments	30
3.2 Methodology	30
3.2.1 Collection of Samples	33
3.2.2 Preparation of Honey's Samples	34
3.2.3 Preparation of 0.5 McFarland Standards	34
3.2.4 Preparation of Inoculums	34
3.2.5 Preparation of Saline Solution	34
3.2.6 Preparation of Stock Culture	35
3.2.7 Preparation of Subculture	35
3.2.8 Preparation of Nutrient Agar (NA)	35
3.2.9 Preparation of Mueller Hinton Agar (MHA)	35
3.2.10 Preparation of Mueller Hinton Broth (MHB)	36
3.2.11 Inoculation on Mueller Hinton Agar (MHA)	36
3.2.12 Antimicrobial Assay	36
3.2.13 Minimum Inhibitory Concentration (MIC)	36
3.2.14 Minimum Bactericidal Concentration (MBC)	37
3.2.15 Determination of Total Phenolic Content	37
3.2.16 Determination of Colour Intensity	38
3.2.17 pH Test	38
3.2.18 ATR-FTIR Analysis	38
3.3 Statistical Analysis	38
CHAPTER FOUR: RESULTS AND DISCUSSION	40
4.1 Antibacterial Activity of Trigona Honey	40