UNIVERSITI TEKNOLOGI MARA

FABRICATION OF POROUS TIND ALLOY INCORPORATED WITH TIH₂ POWDER BY POWDER METALLURGY PROCESSING ROUTE FOR IMPLANT APPLICATIONS

SITI MARIANA BINTI HOSNIE

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Mechanical Engineering

May 2018

ABSTRACT

In the development of implant material, TiNb alloy has become a great interest due to promising mechanical properties that mimic human bone. The promising mechanical properties were due to the present of the β -rich phase in the alloy. Since concern was raised toward the high manufacturing cost, the present study introduced a new approach of using TiH₂ powder, which is cheaper as a reactant instead of Ti powder that is normally employed to fabricate TiNb alloy. In the present study, TiNb alloy had been successfully fabricated via powder metallurgy (PM) processing route under argon environment. The TiNb alloy was fabricated to a composition of 10, 25, 40 and 45 (weight%) of Nb. The powder mixtures with relative composition were subjected to milling, compaction, cold isostatic pressing (CIP), and sintering processes. Besides the influence composition of alloy on the microstructure and mechanical properties, the present work also studied the influence of embedded agent (CaH₂ and Y₂O₃ powders) specifically on helping to reduce the impurities uptake by the alloy during the sintering process. From the result, it was found that different composition of Nb, as well as a different embedded agent, resulted in several β-phase constituent and porosity of TiNb alloy. The combination of β -rich phase and porosity consequently resulted in mechanical properties with the Young's modulus satisfying the requirement for a bone implant. There is a trend established from the study that increased the Nb composition in the alloy, while the β -phase and porosity attained were increased and the Young's modulus was decreased, respectively.

ACKNOWLEDGEMENT

First of all, I would like to give my gratitude and would like to thank my supervisor, Dr. Muhammad Hussain Bin Ismail, for giving me opportunity to study and learn the new field through this project. Being under his supervision has taught me many new things that I never experienced before. Thanks for all the guidance, advice, and willingness to guide and share his knowledge that contributed a lot in this project, which was priceless to me. For teaching and guiding me throughout this project, I would also like to express my gratitude to Mrs Mazyan Binti Yahaya as well as Mrs Nurul Ain Haris. Thank you for their guidance, kindness, helpfulness, time and encouragement that was really helpful for me to finish this project successfully. With their experience in this field, it allowed me to face the difficulty during the project more readily and professionally while overcoming and facing the problems.

Other than that, I would also like to extend my heartfelt gratitude to the Faculty of Mechanical Engineering, University Teknologi MARA specifically the Centre of Advanced Materials Research (CAMAR) for providing me with all the equipment to run the experiment. It gives me a good environment and convenience to proceed and finally finish my project.

Last but not least, I would like to give my special thanks to all that have given continuous encouragement and support to me in finishing up this project. Special thanks is also expressed to all my course mates, friends and especially to my family who gave their never-ending support.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF PLATES	xiv
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii

CH	APTER ONE: INTRODUCTION	1
1.1	Introduction	1
1.2	Statement of the Problem	3
1.3	Objective of the Study	4
1.4	Scope of the Study	5
1.5	Significance of the Study	6
1.6	Outline of the Thesis	6
CH	APTER TWO: LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Biomedical for Implant Applications	7
	2.2.1 Biomedical Applications Prospects	7
	2.2.2 The Development of Metallic Material in Biomedical Applications	8
2.3	Metallurgical Aspects of TiNb Alloys for Biomedical Application	10

2.4	Manufacturing of TiNb Alloy	13
	2.4.1 Arc Melting	13
	2.4.2 Powder Metallurgy (PM) Route	14
	2.4.2.1 Compaction and Sintering (CS)	15
	2.4.2.2 Hot Isostacting Pressure (HIP)	16
	2.4.2.3 Metal Injection Moulding (MIM)	18
	2.4.2.4 Selective Laser Melting (SLM)	20
	2.4.2.5 Uniaxial Hot Pressing	20
2.5	An Overview of Powder Metallurgy Processing Route by Compaction and	22
	Sintering Techniques	
	2.5.1 Milling	22
	2.5.2 Compaction	23
	2.5.3 Cold Isostatic Pressure (CIP)	25
2.6	Sintering of TiNb Alloy	25
	2.6.1 Fundamentals in Solid State Sintering (SSS)	25
	2.6.2 Thermal Analysis	29
	2.6.3 CaH ₂ as the Reducing Agent	30
	2.6.4 Yttria (Y ₂ O ₃) Standpoint in Replacing Alumina (Al ₂ O ₃) During the	31
	Sintering Process	
2.7	Current Trend in Ti-Based Alloy Research Towards Low-Cost	32
	Manufacturing Process	
	2.7.1 TiH ₂ As a New Approach in Formation of Ti-Based Alloy	32
	2.7.2 Advantageous of TiH ₂ in Ti-Based Alloy	33
2.8	Microstructure and Mechanical Properties of TiNb Alloy	35
	2.8.1 Microstructural Evolution (β-rich phase)	35
	2.8.2 Porous Structure	36
	2.8.3 Mechanical Properties	37
CH	APTER THREE: RESEARCH METHODOLOGY	41
3.1	General Research Methodology	41
3.2	Characterization of Powder	41