UNIVERSITI TEKNOLOGI MARA

ARTIFICIAL IMMUNE SYSTEM BASED OPTIMIZATION TECHNIQUE FOR VOLTAGE PROFILE IMPROVEMENT USING UNIFIED POWER FLOW CONTROLLER

Thesis is submitted in partial fulfilment for the award of

Bachelor of Engineering (Hons.) in Electrical

NUR DIANAH BINTI MOHD RADZI Faculty of Electrical Engineering Universiti Teknologi Mara 40450, Shah Alam, Malaysia November 2007

ACKNOWLEDGMENT

In the name of Allah the most gracious and beneficent, with the strengths and patience given, I finally complete this project and thesis.

I would like to express my profound sense of gratitude to Dr. Ismail Bin Musirin for his systematic guidance, valuable advices and motivation and also his constant encouragement towards completing this project and thesis.

This project would not have succeeded without the help and encouragement from my family and friends. I wish to thank to all those who have contributed for the completion of this project and thesis.

Nur Dianah Binti Mohd Radzi

Faculty of Electrical Engineering Universiti Teknologi MARA (UiTM) Shah Alam, Selangor Darul Ehsan

ABSTRACT

This thesis presents the application of Artificial Immune System (AIS) as one of the Biological Computing optimization techniques with the use of Unified Power Flow Controller (UPFC) for voltage profile improvement. In order to determine the optimal voltage profile improvement, the AIS based optimization technique was developed and tested on the IEEE 30-bus Reliability Test System abbreviated as RTS. The programming codes were written in MATLAB. Multiple Unified Power Flow Controllers (UPFCs) are introduced in the system for voltage profile improvement. The UPFC is used with an objective to improve the voltage profile in the transmission systems. The proposed technique shown significant results and proved that the application of UPFC in transmission lines for voltage profile improvement or maximization has been achieved.

TABLE OF CONTENTS

CHAPTER	TOPIC DECLARATION		PAGE i ii iii iv	
	DED			
	ACK			
	ABS			
	TAB	v		
	LIST	T OF FIGURES	vii	
	LIST	viii		
	LIST	Γ OF ABBREVIATIONS	ix	
1.0	INTI	RODUCTION		
	1.1	Introduction		1
	1.2	Objectives of the Study		3
	1.3	Scope of Work		3
	1.4	Organization of Report		3
2.0	UNIFIED POWER FLOW CONTROLLER			
	2.1	Introduction		5
	2.2	Operating Principles of UPFC		5
	2.3	Series Model of UPFC		6
	2.4	Overall Model of UPFC		7
	2.5	Advantages of UPFC		8

3.0	VOL	VOLTAGE CONROL ANALYSIS				
	3.1	Introduction	9			
	3.2	Voltage Control Profile	9			
	3.3	Methods of Voltage Control	9			
4.0	ARTIFICIAL IMMUNE SYSTEM					
	4.1	Introduction	12			
	4.2	Properties of Immune System	15			
	4.3	Application of AIS	16			
	4.4	Artificial Immune System Basic Concepts	17			
	4.5	Advantages of AIS	18			
5.0	DEV	ELOPMENT OF AIS				
	5.1	Introduction	20			
	5.2	Algorithm for AIS	20			
6.0	RESULTS AND DISCUSSION					
	6.1	Voltage Profile Improvement with UPFC Installation	27			
	6.2	Effect of Population Size for Voltage Profile Optimization	31			
7.0	CONCLUSION AND FUTURE DEVELOPMENT					
	7.1	Conclusion	34			
	7.2	Future Development	34			

REFERENCES