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Abstract 

 

Article Info 

Various procedures for producing high-quality zinc oxide (ZnO) nanowires (ZnO NWs) 
have been developed. Nevertheless, most of it rely on harsh circumstances such as high 
temperature, high pressure, costly materials, and complicated procedures. As a result, this 
study introduces an alternative ultrasonic-assisted immersion technique due to its many 
advantages such as low cost, ease of handling, and low energy consumption, as well as 
studying the effect of different precursors on the morphological, structural, and optical 
properties of the ZnO NWs, thus supporting and consolidating previous discoveries and 
providing a clearer understanding of the mechanism of ZnO formation. The most 
promising desirable features have been demonstrated for chromium doped ZnO NWs. 
Field emission scanning electron microscopy (FESEM) was used to examine the surface 
morphology of the samples, and x-ray diffraction (XRD) and UV-visible (UV-Vis) were 
utilised to investigate the structural and optical characteristics of the ZnO NWs. It was 
discovered that inserting Cr as a dopant for ZnO enhanced ZnO NWs by preventing quick 
electron-hole recombination, revealing it as the best dopant. This id due to reduced band 
gap (3.231 eV), relax strain (−0.2383%) and stress (0.560 GPa), and near zero porosities.   
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1.0 Introduction 

Zinc oxide is one of the many nanostructured 
materials commonly used in the study and 
development of oxide-based multifunctional materials 
and one-dimensional nanostructures due to its unique 
properties, one of which is that it improves 
performance when applied to electrical devices such as 
sensors, converters, energy generators, and many more 
(Ding et al., 2018). Using solution synthesis 
techniques, a broad variety of 1-D nanometre to 

micrometre ZnO nanostructures (ZnO NSs) have been 
created, including rods, plates, tubes, rings, tetrapod, 
prisms, pyramids, spheres, hollow structures, 
flowerlike, and multi-needle shaped crystals (Alenezi, 
2018; Choi & Chang, 2018; Jayaprakash et al., 2020; 
Jiao et al., 2019; Latif et al., 2019; Nasiri Khalil Abad 
et al., 2019; Nevárez Martínez et al., 2020; Saleh, 2019; 
Tu et al., 2018; Xu et al., 2021). Nonetheless, ZnO 
nanowires (ZnO NWs) were particularly notable 
among other nanostructures due to their quasi one-
dimensional (1-D) architectures displaying quantum 
confinement phenomena and huge surface to volume 
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ratios. It can be thought of as a 1-D channel with 
electron, hole, and photon absorption, emission, and 
transport, resulting in strong confinement effects on the 
carriers and photons, resulting in various new optical 
and electrical properties for device applications such as 
short wavelength light emitting diodes (LEDs) and 
nanometre lasers (Mohammed, 2019). 

Numerous methods have been established to 
synthesise high quality ZnO NSs. When compared to 
nanoparticles (NPs) deposited on a flat surface, one-
dimensional nanostructures (NSs), such as nanowires 
grown on a substrate, offer a higher surface-to-volume 
ratio, and thus a higher photocatalytic activity via 
enhanced adsorption of target organic molecules onto 
the catalyst surface (Jiao et al., 2019). Other benefits 
include a wide range of substrate materials and 
geometries, as well as a simple crystal-growth method 
that enables much cheaper production costs than other 
semiconductors utilised in nanotechnology (Baruah et 
al., 2008; Zhou et al., 2017). Though the current growth 
methods for ZnO NSs, such as vapour liquid solid 
(VLS) growth (Kennedy et al., n.d.), chemical vapour 
deposition (CVD) (Bhutto et al., 2019), physical 
vapour deposition (PVD) (Sinju et al., 2020), and 
pulsed laser deposition (PLD) (Susner et al., 2014), are 
successful, the only drawback is that they require harsh 
conditions such as high temperature, high pressure, 
expensive materials, and complex procedures (Elzein 
et al., 2020). Alternatively, immersion techniques have 
been proposed because to their numerous benefits, 
including low cost, simplicity of handling, low energy 
usage, and scalability (Abdullah et al., 2019; Musa et 
al., 2020). 

Another important element influencing the 
circumstances for the synthesis of ZnO NSs would be 
the dopants supplied to the precursor solution. Previous 
research revealed that controlled synthesis of materials 
at the micro- and nanoscale has been of research 
interest, even though it has been fraught with 
difficulties, because the physical and chemical 
properties and functionalities of a specific material are 
determined by its structure and/or morphology. Doping 
with different metal ions, particularly rare earth metals, 
can alter the magnetic, sensing, morphological, 
electrical, and optical characteristics of the host 
material (Zheng et al., 2022). For example, the primary 
purpose of the aluminium dopant was to improve 
electrical conductivity by substituting Zn2+ with Al3+, 
which resulted in an increase in free carrier 
concentration. (Shah et al., 2019). Cobalt doped 

photocatalytic activity was increased by providing an 
appropriate band gap (Poornaprakash et al., 2020). 
Because of their significant UV absorption and near 
closeness of ionic radius to Zn, chromium doped 
materials were investigated in this study (Chinnasamy 
& Balasubramanian, 2020). Iron doped is a high-
solubility substitutional cation in ZnO, and Fe-doped 
ZnO displayed p-type conductivity (Li et al., 2019). 
Finally, magnesium doped in this system provides a 
controlled band gap, minimal lattice misfit with ZnO, 
and excellent crystallinity (Jaballah et al., 2020). 

Furthermore, because of its weak optical and 
electrical properties, pure ZnO cannot be employed 
directly in optoelectronics applications. Many studies 
have found that doping ZnO has a significant impact 
on its optical and electrical characteristics (Lehru et al., 
2021; Poul Raj et al., 2020; Zhang et al., 2022). To 
address this issue, a good doping technique is required 
to enhance the optical and electrical characteristics of 
ZnO (Lv et al., 2018; Zhao et al., 2021). Moreover, the 
traditional method of producing ZnO by solution-based 
approach focuses on the effects of stabiliser rather than 
the reactant dispersion, which causes non-
homogeneous reaction during the mixing process of 
precursor and solvent, which contributes to the 
formation of large particles and reduces the surface 
area of the nanostructures. This process will contribute 
to limited electron transport and excessive 
recombination via defects such grain boundaries 
(Abdel Messih et al., 2019).  

In this connection, the paper is mainly focused on 
the study the introducing of various dopants into the 
intrinsic ZnO by our own modified innovative 
Ultrasonic-Assisted Immersion Technique. We can 
achieve a more homogeneous reaction process, as well 
as greater overall control over the nanostructure’s 
development process. 

2.0 Methodology 

2.1 Material 

Zinc acetate dehydrate [(Zn(CH3COO)2·2H2O] 
(99% purity), 2-methoxyethanol [C3H8O2], zinc nitrate 
hexahydrate [Zn(NO3)·6H2O], 
hexamethylenetetramine (HMTA), [C6H12N4], 
aluminium nitrate nonahydrate [Al(NO3)3·9H2O] (99% 
purity), cobalt(II) nitrate hexahydrate 
[Co(NO₃)₂·6H₂O] (99% purity), chromium(III) nitrate 
nonahydrate [Cr(NO3)3·9H2O] (99% purity), iron(III) 
nitrate nonahydrate [Fe(NO3)3·9H2O] (99% purity), 
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and magnesium nitrate hexahydrate [Mg(NO3)2·6H2O] 
(99% purity) and deionized water. All chemicals used 
in this work were bought from Sigma-Aldrich 
company. 

2.2  Preparation of ZnO nanoparticles seeded layer 
thin films. 

Based on Zinc Oxide Nanoparticles was produced 
as seed layer thin films on a glass substrate using an 
improved ultrasonic-assisted sol-gel spin-coating 
process (Mamat et al., 2011, 2014). The sonicated sol-
gel ZnO was made by dissolving zinc acetate dehydrate 
[(Zn(CH3COO)·2H2O] in 2-methoxyethanol [C3H8O2] 
at ambient temperature. Then, as a stabiliser, 
monoethanolamine [MEA, C2H7NO] and a catalyst, 
aluminium nitrate nonahydrate [Al(NO3)3·9H2O] was 
added. The molar ratio of MEA to zinc acetate 
dehydrate was kept constant at 1:1, and the zinc acetate 
dehydrate concentration was 0.4 mol/L while the 
catalyst is 1% of the precursor molarity. The resulting 
solution was agitated for 30 minutes at 80 °C to 
produce a clear and homogenous solution. The solution 
will then be utilised to coat the glass substrate using the 
spin coating process, which involves depositing 10 
droplets of solution onto the substrate at a speed of 
3000 rpm for 30 seconds. Finally, the samples were 
warmed for 10 minutes in an ambient environment at 
300 °C to eliminate the solvent. The deposition steps 
were repeated up to 5 times. Lastly the samples were 
annealed in a furnace at 500 °C for 1 hour. 

2.3 Deposition of ZnO nanostructures via ultrasonic-
assisted immersion technique 

Ultrasonic-Assisted Immersion Technique was 
used to generate ZnO NWs. The first stage was to use 
our innovative optimised sonochemical approached to 
produce ZnO in a 37.5 mM aqueous solution generated 
with zinc nitrate hexahydrate [Zn(NO3)2H2O] as a 
precursor and hexamethylenetetramine [HMTA, 
C6H12N4] as a stabiliser (Sofea et al., 2020). aluminium, 
cobalt, chromium, iron, and magnesium was added to 
their respective solution at 1% of the solution molarity. 
The reagents were dissolved and interacted for 30 
minutes in a beaker with 1000 mL of distilled water as 
a solvent to obtain a clear and homogeneous solution. 
The solution was then sonicated for 30 minutes in an 
ultrasonic water bath at 50 °C (Hwasin Technology 
Powersonic 405, 40 kHz) to supple energy to the 
solution to archive homogeneous structure. The 
solution was transfer into a Scott bottle with a volume 
capacity of 130 ml, and the optimum seed layer-coated 

glass substrates were placed at the bottom. After that, 
the container was placed into a water bath set to 95 °C 
for 3 hours. After both samples were cleaned and 
annealed at 500 °C for 1 hour. 

3.0  Results and discussion 

3.1 XRD analysis 

 Fig. 1 depicts the XRD patterns of doped-ZnO 
NWs arrays thin sheets. All the diffraction peaks are 
consistent with a hexagonal wurtzite ZnO structure 
(JCPDS No. 00-036-1451). There are a series of 
diffraction peaks at 2=31.8°, 34.4°, 36.1°, 47.5°, 56.6°, 
62.9°, and 68.0°, which correspond to the (100), (002), 
(101), (102), (110), (103), and (112) ZnO 
crystallographic planes. The strength of the diffraction 
peak corresponding to the (002) plane centerer at 34.4o 
increases significantly for all doped-ZnO NWs thin 
films when compared to other peaks. The (002) 
reflection has sharpened significantly, indicating that 
the c-axis of the majority of the ZnO nanocrystals is 
preferentially orientated perpendicular to the substrate 
as a result of a surface-energy-driven self-texturing 
mechanism (Azulay et al., 2020). Highest (002) 
diffraction peak is obtained when doped with 
chromium. The differences in the XRD pattern of the 
ZnO (002) peak may be explained by the ionic radii of 
Al3+ (0.53 Å), Co2+ (0.72 Å), Cr3+ (0.63 Å), Fe3+ (0.64 
Å), and Mg2+ (0.72 Å), which are lower or almost 
comparable to that of Zn2+ (0.74 Å) (Huang et al., 2022; 
Kabbur et al., 2021; Lu et al., 2016; Qiang et al., 2022; 
Sharma et al., 2019; Tang et al., 2019).  

Table 1 shows the relative peak intensity (RPI) of 
(002) orientation for ZnO NWs measured from their 
XRD pattern. The relative peak intensity of the (002) 
plane for cobalt-doped ZnO NWs is 0.4520, which is 

 
Fig. 1: The XRD patterns of ZnO NWs arrays immersed 

with different types of dopants 
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substantially higher than for magnesium-doped 
(0.6348), aluminium-doped (0.6432), iron-doped 
(0.7042), and chromium-doped (0.7599). Scherrer’s 
equation was used to compute the average crystallite 
size, D, of ZnO NWs generated at various doped-ZnO 
NWs (Okeke et al., 2021; Sathya & Pushpanathan, 
2018). The FWHM values of the ZnO NWs (002) peak 
were affected by the type of dopants used. Doped-ZnO 
NWs had typical crystallite sizes ranging from 21 to 24 
nm. The calculated RPI to the doped-ZnO NWs (002) 
plane, FWHM, and average crystallite size of the 
doped-ZnO NWs are summarised in Table 1. 

Different types of dopants, on the other hand, had 
an influence on the XRD pattern’s 2θ values of ZnO 
(002) peak placement. The 2θ values for the samples 
doped with aluminium, cobalt, chromium, iron, and 
magnesium are 34.49°, 34.45°, 34.47°, 34.47°, and 
34.47°, respectively, indicating c-axis lattice variation.  

Table 2 depicts the difference in two values of 
doped-ZnO NW with various impurities, indicating 
lattice expansion/compression due to stress 
fluctuations (Terasako et al., 2019). The observed 
nature might be explained by the dopant agent’s ionic 
radius fluctuation (Kaphle et al., 2018). The c-axis 
lattice of the doped ZnO NW was calculated using 
Bragg’s law (Kasapoğlu et al., 2021). The expected 
lattice constants for c-films doped with aluminium, 
cobalt, chromium, iron, and magnesium were 5.195, 
5.201, 5.198, 5.198, and 5.198 nm, respectively, 
according to our observations. The c-film 
discrepancies were unmistakable, meaning that the 
incorporated dopants occupied specific lattice 
locations, resulting in inhomogeneous unit cell 
deformation along the c-axis direction. As a result of 
the dopant inclusion, the ZnO lattice deformed 
significantly, changing the lattice structure and/or 
crystallinity of the ZnO NWs. The lattice constant 'c' of 
nanowires is clearly smaller than that of bulk ZnO, 
meaning that all samples’ tensile strain and 
compressive stress are released (Mosalagae et al., 
2020). The shift in the lattice constant implies that the 
strain/stress inside the nanowire structure has changed. 

Normally, the strain in the films is inherent, 
whereas the stress inside the structure is mostly 
induced by the growing process (Zauner et al., 2022). 
The stress, film of the doped-ZnO NWs was estimated 
to examine the influence of different impurities on the 
crystal lattice and structural properties. Because of 
changes in atomic radii, the strain/stress of the 
synthesised doped-ZnO NWs varied, which also led to 
the shift in the (002) diffraction peak position. Smaller 
atomic radii and a shift in the (002) peak location's 2θ 
angle towards the bulk value indicate that crystal 
growth is slowing. This relaxation might be attributed 
to the incorporation of impurities into the ZnO lattice, 
resulting in decreased lattice compression (Belkhaoui 
et al., 2019). Extrinsic stress caused by lattice 
mismatch and the thermal expansion coefficient 
between samples and substrate will not be present in 
the nanowires structure, and the total projected stress 
values appear to be largely intrinsic, as evidenced by 
the calculated stress values. Table 2 summarises the 
lattice parameters, 2θ position of (002) peak, interplane 
distance, strain, and stress of ZnO NWs growth with 
various type of dopants. 

 

3.2 FESEM images 

Fig. 2 (a–e) (i) shows the surface morphology 
FESEM images of (a) aluminium-doped, (b) cobalt-
doped, (c) chromium-doped, (d) iron-doped, and (e) 
magnesium-doped ZnO NWs. The hexagonal 
nanowires were all formed perpendicularly on the ZAO 
seed layers. The nanowires all had a significant (002) 
peak, suggesting that they grew along the c-axis. The 

Table 2: Lattice parameters, 2θ position of (002) peak, interplane distance, strain and stress of ZnO NWs immersed with 
various type of dopants 

Dopants Lattice parameters  
c-film (Å) 

2θ of (002) peak 
(Degree) 

Interplane 
distance, d (Å) 

Strain of c-axis (%) Stress (GPa) 

Al 5.195 34.49 2.597 -0.2944 0.685 
Co 5.201 34.45 2.600 -0.1821 0.424 
Cr 5.198 34.47 2.599 -0.2383 0.560 
Fe 5.198 34.47 2.599 -0.2383 0.560 
Mg 5.198 34.47 2.599 -0.2383 0.560 

Table 1: The variation of the structural parameters of 
ZnO NWs doped with various types of dopants 

Dopants RPI (002) FWHM 
(Degree) 

Crystallite size 
(nm) 

Al 0.6432 0.4040 21.49 
Co 0.4520 0.4390 19.77 
Cr 0.7599 0.4337 20.01 
Fe 0.7042 0.3591 24.17 
Mg 0.6348 0.3658 23.73 
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average diameters of aluminium-doped, cobalt-doped, 
chromium-doped, iron-doped, and magnesium-doped 
ZnO NWs were 55.92, 123.08, 79.00, 36.29, and 
127.10 nm, respectively. Changes in the atomic radii of 
Zn and the dopants are hypothesised to produce the 
fluctuation in the diameter of the nanowires. During the  

deposition process, different dopants may estimate 
the diameter size of the nanowires, where the doping 
process may occur via interstitial and/or substitution 
reaction. Fig. 2 (a–e) (ii) shows the length of the doped-
ZnO NWs in cross section. The length of each sample 
was determined using a cross-sectional view of the 
FESEM images. aluminium-doped, cobalt-doped, 
chromium-doped, iron-doped, and magnesium-doped 
ZnO NWs had lengths of 468.90, 680.90, 729.60, 
922.2, and 736.7 nm, respectively. The aspect ratio of 
the nanowires found to be varied with different dopant 
introduced with chromium-doped ZnO NWs have 
highest aspect ratio of 22.8 (Kim et al., 2018). Table 3 
summarises the average values of the diameter, length, 
and aspect ratio of ZnO NWs doped with various types 
of dopants. The FESEM images clearly illustrate that 
different types of dopants influence the morphologies 
of the nanowire formations. 

3.3 UV-vis analysis 

Fig. 3 displays the optical transmittance spectra of 
aluminium-doped, cobalt-doped, chromium-doped, 
iron-doped, and magnesium-doped ZnO NWs from 
350 to 800 nm. All the nanowires showed a greater 
transmission characteristic of more than 72% in the 
visible light domain, which is consistent with the 
structure's previous measured length. According to the 
data analysis, the cobalt-doped ZnO NWs showed the 
highest average transmittance in the visible region 
(87.15%). On the other hand, the chromium-doped 
ZnO NWs at the same wavelength showed the lowest 
transmittance of 72.08%. This corresponds to the XRD 
peak intensity pattern.  

Fig. 3 displays the optical absorption coefficient 
spectra of aluminium-doped, cobalt-doped, chromium-
doped, iron-doped, and magnesium-doped ZnO NWs 
between 350 and 800 nm. The variation in absorption 
edges is visible, which might be due to the difference 
in ionic radius between the impurity ions that cause 
light scattering effects in nanowire formation 
(Mohamed & Ismail, 2021). 
 

 

    

    

 

 

Fig. 2: FESEM morphologies and cross-sectional images of ZnO NWs prepared on ZAO seed layer of (a) aluminium-
doped, (b) cobalt-doped, (c) chromium-doped, (d) iron-doped and (e) magnesium-doped ZnO NWs 

Table 3: Average diameter, length and aspect ratio of ZnO NWs immersed with various types of dopants 
Dopants Average Diameter (nm) Length (µm) Aspect ratio 

Al 55.92 0.469 8.39 
Co 123.01 0.611 4.97 
Cr 79.00 0.730 10.3 
Fe 36.288 0.816 22.8 
Mg 124.10 0.615 4.96 
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Fig. 3: transmittance spectra of (a) aluminium-doped,  

(b) cobalt-doped, (c) chromium-doped, (d) iron-doped,  
and (e) magnesium-doped ZnO NWs 

4.0 Conclusions 

It can be concluded that thin films of vertically 
aligned ZnO NWs arrays were successfully produced 
using different dopants. ZnO NWs arrays with dopants 
aluminium, cobalt, chromium, iron, and magnesium 
had average diameters of 55.9, 123.01, 79.00, 36.29, 
and 124.10 nm, respectively. According to cross-
sectional pictures, the thickness of the samples was 
0.469, 0.611, 0.730, 0.816, and 0.615 nm for Al, Co, 
Cr, Fe, and Mg, respectively. All the nanowire samples 
have a polycrystalline hexagonal wurtzite structure 
dominated by the (002) peak, showing that growth is 
along the c-axis orientation. The Chromium-ZnO NWs 
displayed the long structure and the most significant 
(002) peak in all the samples’ XRD patterns. The 
highest peak intensity of c-film nanowires, the high 
aspect ratio of nanowires is all found in chromium-ZnO 
NWs. All the findings highlight to the importance of 
controlling vertically oriented ZnO NWs thin films.  
 

This is done to enhance film surface area and 
uniformity of doping element distribution. 
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