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ABSTRACT

The effects of partial substitution of Fe at the Mn site on structural, magnetic, 
and electrical properties of monovalent doped Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 
manganite prepared by the solid-state method were investigated. X-ray 
Diffractometer, AC Susceptibility, and four point probe measurements were 
used to characterize the structural, magnetic, and electrical properties. The 
sample crystallized in an orthorhombic structure with a Pnma space group. 
The sample exhibited ferromagnetic (FM) to paramagnetic (PM) transition 
behaviour with Curie Temperature, TC value of 121.5 K. From the resistivity 
versus temperature analysis, the sample  exhibited insulating behaviour 
over entire temperature from 30 K - 300 K. Fe substitution exhibited high 
magnetoresistance (MR %)  value at low temperature region, indicating 
the extrinsic mechanism of MR effect. 
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INTRODUCTION 

Manganite materials with A1−xBxMnO3  (A =La, Pr, Nd, B = Na, K) [1–3] 
have emerged as one of the most intriguing research topics due to their 
unique properties such as electrical and magnetic properties as well as 
colossal magnetoresistance (CMR) [4–6]. Furthermore, such properties can 
be considered for a new class of electronic devices based on the MR effect  
[7], which predicted an increase in wide applications areas such in consumer, 
automotive, medical, industrial, and other applications [8]. A wide range 
of studies has been conducted, focusing on various methods and chemicals 
[9] for improving the magnetic, electrical, and dielectric properties of these 
materials, which may be potential candidates for industrial applications such 
as spintronic-based devices [4, 5, 10], magnetic sensors [4], non-volatile 
memory elements [10], and supercapacitor electrodes. Thus, the tuneable 
properties exhibited by manganites make them highly attractive candidates 
for utilisation in various applications which also depending on few factors 
such as temperature and doping used in the investigation [9, 11]. 

Manganites exhibit tuneable electrical and magnetic properties by 
doping at the Mn site [12, 13]. Such properties directly affected the properties 
of  the  MnO6 octahedral and the Mn3+- O2--Mn4+ network [14]. In addition, 
several studies have been conducted to investigate the effect of doping at the 
Mn-site on the physical properties of manganites, such as in Pr0.67Sr0.16Ca0.1

7Mn0.75Fe0.25O3 [3], La0.7Ca0.3Mn1-xCrxO3 [4], and Pr0.67Ba0.22Sr0.11Mn1-xTixO3 
[15]. According to studies, different substitutions of manganite systems 
exhibit different mechanisms and properties [9,16,17]. Among that, Fe 
substitution was reported to contribute to mixed phases of AFM clusters in 
the FM matrix [18,19]. As a result, it is intriguing to investigate the effect 
of Fe in Pr0.75Na0.05K0.20MnO3 manganites.

 Interestingly, Pr0.75Na0.05K0.20MnO3 exhibit the highest value of 
ferromagnetic to paramagnetic transition temperature, TC ~ 116 K, as 
compared to another sample as reported by previous study [2]. Thus, 
substitution of Fe3+ at Mn-sites will play an important role in magnetic, 
electrical properties and magnetoresistance in Pr0.75Na0.05K0.20MnO3 
manganite due to the presence of mixed phases consisting of AFM clusters 
in the FM matrix.
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METHODOLOGY 

The solid-state method was used to synthesize Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 
from high purity (99.99 %) of Pr6O11, Na2CO3, K2CO3, Fe2O3, and MnO2 
in the appropriate stoichiometric ratio. With two intermediate grindings, 
the materials were thoroughly mixed, ground, and calcined for 24 h at             
950 ℃. Then, the mixtures were reground and pressed into pellets under 5 
tons of pressure, with diameter of 13 mm and thickness of around 3 mm. 
The samples were then sintered at 1100 ℃ for 36 h. The morphology of the 
sample was examined using a scanning electron microscope (SEM) (LEO 
model 982 Gemini) at a magnification of 10K. The elemental composition 
was determined using the energy dispersive X-ray (EDX) technique. AC 
susceptibility was set up to measure the magnetic properties of the samples 
from 30 K to 300 K. The electrical resistivity and magnetoresistance (MR) 
behaviors of samples were investigated using the standard four-point probe 
technique (Janis model CCS 350ST cryostat) at temperatures ranging from 
30 K to 300 K in external magnetic fields of around 0.8 T.

RESULTS AND DISCUSSION

Structural Properties

Figure 1 (a) depicts the XRD pattern for a Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 
sample. As can be seen, the sample has a single phase with no discernible 
secondary phase. The Rietveld technique was used to refine the data using 
the EXPGUI and GSAS programmes. All diffraction peaks were indexed 
in an orthorhombic perovskite structure with the space group pmna (No.62) 
as shown in Figure 1 (b). This result aligns with the published data for the 
undoped sample [2, 20] which indicated a good quality data. The structural 
parameters from the Rietveld refinement for Pr0.75Na0.05K0.20Mn0.95Fe0.05O3  
manganite are listed in Table 1. The tolerance factor (τ) was measured to 
determine the stability of the structure was discovered to have a similar 
value (0.9451) to the parent compound of Pr0.75Na0.05K0.20MnO3  as stated by 
previously published data [20]. The results showed that the Fe substitution 
at Mn-site had no effect on the structure of the investigated sample could 
be due to similar ionic radius of Fe3+ and Mn3+ ions (0.645 Ǻ) [21,22].
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Table 1: Lattice Parameters; Unit Cell Volume, V; Tolerance Factor, τ and χ2; 
for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3

Parameter

Symmetry Orthorhombic
Space Group Pnma

a (Å) 5.4422 (3)
b (Å) 7.6844 (2)
c (Å) 5.4457 (3)
V (Å3) 5.4337 (2)

χ2 1.272
τ 0.9451

 

Figure 1: (a) XRD diffraction patterns and (b) Rietveld X-ray diffraction pattern 
refinement for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3 at room temperature

Morphology Properties

SEM micrographs of the Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 with ten 
thousand (×10k) magnification is shown in the inset of Figure 2 which 
shows the grains are irregular in shape and size. All the elements are shown 
in Figure 2 examined by the energy dispersive X-ray (EDX), which proved 
the existence of all elements in the compound.
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SEM micrographs of the Pr0.75Na0.05K0.2Mn0.95Fe0.05O3 with five thousand (× 10𝑘𝑘𝑘𝑘) magnification 
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Pr0.75Na0.05K0.2Mn0.95Fe0.05O3 with a magnification of 5k 
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Figure 2: EDX spectra for the Pr0.75Na0.05K0.2Mn0.95Fe0.05O3. Inset: SEM image for 
the Pr0.75Na0.05K0.2Mn0.95Fe0.05O3 with a magnification of 5k

Magnetic Properties

As shown in Figure 3(a), the real part of the AC susceptibility 
measurements versus temperature of Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 sample 
exhibits a ferromagnetic to paramagnetic (FM-PM) phase transition with 
the increase of temperature. The Curie temperature (TC ) was observed at 
121.5 K, which determined by the minimum temperature curves of dχ⁄dt 
versus temperature shown in the inset Figure 3(a). According to Aziz et 
al.[20], the parent compound has a higher TC value (140.7 K) compared to 
the studied sample [20]. The significant decrease in TC could be attributed to 
a weakening of ferromagnetic (FM) interaction caused by an enhancement 
of antiferromagnetic (AFM) ordering with  Fe substitution [3]. A few 
reports similar finding regarding Fe substitution at Mn-site, suggesting that 
the weakening of FM interaction could also be due to the reduction of the 
Mn3+/Mn4+ ratio [23, 24].

 In order to gain more in-depth into the magnetic properties within 
the paramagnetic (PM) region, a graph illustrating the inverse of χ' plotted 
against temperature (T) was generated, as depicted in Figure 3(b). The linear 
behaviour of the inverse susceptibility suggests that the data follows to the 
Curie-Weiss law which defined by χ=C/(T-θP )  where χ, C and θP represent 
the magnetic susceptibility, Curie constant and Weiss temperature, as shown 
by the fitting curve (solid red line) depicted in the Figure 3(b).

3 
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Figure 3: (a) The real part of AC susceptibility (χ') and (b) the inverse magnetic 
susceptibility (χ-1) versus temperature for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3. 

Inset: The plot of dχ'⁄dt versus temperature for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3

Electrical Properties

As previously reported, the Pr0.75Na0.05K0.2MnO3 compound exhibited 
a metal insulator (M-I) transition at transition temperature (TMI) of 122 K  
for 0 T and 0.8 T of applied field [20]. In contrast, substitution of Fe in    
Pr0.75Na0.05K0.20Mn0.95Fe0.05O3  sample exhibits insulating behavior over the 
whole temperature range from 30 K to 300 K for 0 T field. The observed 
behaviour may be explained by the dominant effect of the super-exchange 
(SE) mechanism, which involves Fe3+- Fe3+, Mn3+- Mn3+ and Mn4+- Mn4+ 

[24]. Furthermore, other research stated a similar suggestion such as Fe3+ 

doped in Pr0.67Sr0.16Ca0.17Mn0.75Fe0.25O3 manganite and reported that Fe3+ 
ion does not participate in the double exchange (DE) mechanism [3]. 
In addition, the resistivity decreases as the temperature increases and is 
almost constant at high temperature above 100 K, as depicted in Figure 4. 
This phenomenon can be attributed to the delocalization of charge carriers 
inside the sample as a result of the increased energy levels caused by the 
temperature increase [3].
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Figure 4: Temperature dependence of resistivity for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3.
Inset show the log r vs T for Pr0.75Na0.05K0.2Mn0.95Fe0.05O3.

 Under a 0.8 T magnetic field, however, the resistivity slightly reduced 
supported by the graph of log ρ versus temperature (in the inset of Figure 
4), resulting in the magnetoresistance (MR) effect. The MR effect which 
calculated using equation MR (%)  =(ρ(0,T)-ρ(H,T))/ρ(0,T) ×100% , where 
ρ(0,T) and ρ(H,T) represent the resistivity for 0 T and 0.8 T fields [25–27]. 
The MR % is high at low temperatures, as shown in Figure 5, indicating the 
extrinsic mechanism of MR effect. This behaviour is indicated that applying 
an external magnetic field aligns disordered Mn spins in grain boundary 
regions which enhanced the spin-polarised tunnelling (SPT) mechanism 
between grains [27,28]. The findings are consistent with a prior study that 
reported a similar suggestion [27,29,30]. 

5 
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Figure 5: Temperature dependence of Magnetoresistance (MR) of
Pr0.75Na0.05K0.2Mn0.95Fe0.05O3

CONCLUSION 

In summary, Pr0.75Na0.05K0.20Mn0.95Fe0.05O3 compound crystallized in 
an orthorhombic structure with a Pnma space group and exhibited 
ferromagnetic (FM) to paramagnetic (PM) with a Curie temperature of 
121.5 K. The linear relationship of the inverse magnetic susceptibility, 
as described by the Curie-Weiss law, is observed. The resistivity data of 
the compound exhibits insulating behaviour when Fe is substituted across 
all temperatures and reveals a decrease in resistivity as the temperature 
increases. Magnetoresistance (MR) versus temperature graphs demonstrated 
that Fe substitution elevated MR at low temperatures, revealing that the 
extrinsic MR effect dominated.
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