UNIVERSITI TEKNOLOGI MARA

AERODYNAMICS OF LOW ASPECT RATIO BLENDED WING-BODY AIRCRAFT

ATIKAH BASYIRAH BINTI ABDUL MUTA'ALI

Dissertation submitted in fulfillment of the requirements for the degree of **Master of Science** (Mechanical Engineering)

Faculty of Mechanical Engineering

July 2019

ABSTRACT

Blended wing-body (BWB) is a concept with promising future. Many studies have been conducted on blended wing-body concept, each with different ideas and designs. The search of the perfect BWB design is still on going around the world with the hope of applying the design to the conventional aviation industries. This research work focuses on study and development a blended wing-body aircraft under the name of Baseline-IX. Baseline-IX BWB aircraft design is somewhere in the middle between a blended wing-body and a fixed-wing. The design is influenced of requirement of having a nose forward mounted mission camera and provision to carry large batteries in its fuselage with only a wingspan under 2.0 meters. Baseline-IX is designed to provide good longitudinal stability with high lift-to-drag ratio. Aerodynamic characteristics of Baseline-IX is investigated and validated through wind tunnel experiments and numerical computational. Experimental investigation with a scaled down model of Baseline-IX is conducted at 36m/s in LST-1 wind tunnel at FTTC laboratory. Simulations were done using VSPAERO software with a scaled down and prototype model of Baseline-IX. Aerodynamic characteristics between wind tunnel experiment and CFD simulations shows no significant difference between both results of lift coefficient, drag coefficient and drag polar that were plotted of scaled down 1:2.4 model of Baseline-IX. Maximum lift-to-drag ratio obtained through this study for Baseline-IX 1:2.4 scaled model and 1:1 prototype is 18.06 and 25.12 respectively. Baseline-IX BWB has good aerodynamic characteristics and longitudinal stability despite its basic design. Promising performance are predicted for Baseline-IX BWB throughout its improvement processes.

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah I wish to thank God for giving me the opportunity to embark on my master degree and for completing this challenging journey successfully. My gratitude and thanks go to my supervisor Dr Rizal Effendy bin M. Nasir and my cosupervisor Professor Dr Wirachman Wisnoe for all of their support and guidance through this knowledgeable journey.

My appreciation goes to the UiTM staff who provided the facilities and assistance during manufacturing and testing stage. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my husband who has been my back bone since day one. My parents, Ibu and Ayah for their never ending support and I am forever grateful for you two. Thank you to my in laws, Mama and Abah and the rest of my family members for the support and always keeping me in your du'a. This piece of victory is dedicated to all of you.

To my two boys; Fattah and Affan,; Sky is not the limit. Reach beyond.

TABLE OF CONTENTS

CON	ii	
AUT	iii iv v vi ix x xiv xv	
ABS		
ACH		
TAB		
LIST	Γ OF ABBREVIATIONS	xvi
CHA	APTER ONE : INTRODUCTION	1
1.1	Research Background	1
1.2	Motivation	1
1.3	Problem Statement	2
1.4	Research Questions	3
1.5	Objectives	3
1.6	Scope of Work	3
1.7	Hypothesis	4
CHA	APTER TWO : LITERATURE REVIEW	6
2.1	Preamble	6
2.2	Previous Studies on Blended Wing-Body	7
2.3	Baseline Evolution in Universiti Teknologi Mara	10
2.4	Wind Tunnel Experiment	15
2.5	Panel Method Numerical Computational	18
CHA	APTER THREE : RESEARCH METHODOLOGY	20
3.1	Research Area	20
	vi	

3.1.1	Resear	rch Methodology	20
	3.1.1	Baseline-IX BWB Design Phase	22
	3.1.2	Baseline-IX Numerical Computational Simulation using VSPAERO	0 25
	3.1.3	Wind Tunnel Model Fabrication	35
	3.1.4	Baseline-IX Wind Tunnel Experiment	40
	3.1.5	Baseline-IX Tuft Visualization Experiment	45
3.2	Basic	Aerodynamic Coefficients Numerical Analysis	47
	3.2.1	Relationship between pitch moment coefficient and lift coefficient	49
CHA	PTER I	FOUR : RESULTS AND DISCUSSION	52
4.1	Introd	uction	52
4.2	Baseli	ne-IX BWB Wind Tunnel and VSPAERO results	52
	4.2.1	Lift Coefficient versus Angle of Attack	56
	4.2.2	Drag Coefficient versus Angle of Attack	59
	4.2.3	Drag Coefficient versus Lift Coefficient	60
	4.2.4	Pitch Moment Coefficient versus Lift Coefficient	63
	4.2.5	Lift to Drag Ratio (C _L /C _D) versus Angle of Attack (α)	67
4.3	Wind Tunnel Accuracy		69
4.4	VSPA	ERO Simulation Pressure Contour Results	70
	4.4.1	1:24 Scaled Down of Baseline-IX BWB Pressure Contour	70
	4.4.2	Baseline-IX BWB Prototype Pressure Contour	75
4.5	Baseli	ne-IX 1 :2.4 Scaled Model Wind Tunnel Tuft Visualization	79
CHA	PTER I	FIVE : CONCLUSION	84
5.1	Baseli	ne-IX Aerodynamic Coefficients	84
5.2	Baseline-IX versus Baseline-V		
5.3	Recon	nmendations	86