

RISK ASSESSMENT OF LIGHTNING PROTECTION SYSTEM USING COLLECTION VOLUME METHOD AT FACULTY OF ARCHITECTURE, PLANNING AND SURVEYOR IN UITM SHAH ALAM.

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hon) Electrical FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

HAIDZUM HAZWANI BINTI HAIRI 2010880814

Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

Alhamdulillah, the whole praise is to almighty Allah, creator of this universe. Who made us the super creature with great knowledge and who able me to accomplish this work. I feel great pleasure in expressing my deepest appreciation and heartiest gratitude to my supervisor; Tuan Hj Ir Harizan Che Mat Haris for his guidance and great help during completion this final year project.

I would like to express my deepest affection for my parents and family who prayed for my success and encouraged to me to complete this project work. Without their pray I will not be able to finish my project.

High appreciation goes to my group members and friends for their help, understanding and encouragement to me while completing this assignment. Last but not least, special thanks to the technician involved in data collecting at my site. Thanks a lot.

ABSTRACT

This paper described case study on risk assessment of lightning protection system using Collection Volume Method at Faculty of Architecture, Planning and Surveyor in UiTM Shah Alam. Apparently, lightning is a bright flash of electricity that is produced by a thunderstorm. Malaysia also recorded as second country with the highest number of lightning strikes in the world. Lightning is considered the worst natural killer, causing at least 25,000 deaths worldwide each year [2]. Records stated that the number of lightning in Malaysia was double of that in Florida [2]. But Malaysian is still not aware of its dangers. Risk assessment is a procedure use to detect potential hazard and analyze the possible occurrence happen towards the building and assets by using the suitable lightning protection system (LPS). The assessment of risk due to all possible effects of lightning flashes to a structures and services is done according to Malaysian Standard MS IEC 62305. The tolerable risk (R_T) and all relevant risk components (R_1) are being compared to decide whether the structure needs to be protected or not. If R₁ is happen to be greater than R_T, the structure is protected and vice versa. Through out of this project, the Collection Volume Method (CVM) will prove either the structure is safe or not. At the end of this paper, the analyzed data will present the reliability or any improvement of the protection system.

Table of Contents

Contents	Page
Approval	i
Declaration	ii
Acknowledgement	iii
Abstract	iv
List of Figures	viii
List of Tables	ix
List of Equations	xi
List of Abbreviation	xii
Chapter 1 : Introduction	1
1.1 Background of Study	2
1.1.1 Definitions	2
1.1.2 Formation of Lightning	3
1.1.3 Types of Lightning	3
1.1.3.1 Cloud-to-ground Lightning	4
1.1.3.2 Cloud-to-cloud Lightning	4
1.1.3.2 Ground-to-cloud Lightning	5
1.1.3.4 Cloud-to-air Lightning	5
1.1.4 Lightning Damage and Risk Assessment	6
1.2 Problem Statement	9
1.3 Objective	10
1.4 Significant of Study	10
1.5 Scope of Work	11
1.6 Thesis Organization	11
Chapter 2 : Literature Review	12
2.1 Malaysian Standard MS IEC 62305-2	13
2.2 Lightning Protection System	14
2.3 Air Terminal	15
2.3.1 Conventional Lightning Protection System	15

2.3.2 Unconventional Lightning Protection System	16
2.4 Collection Volume Method	17
2.5 Why choose CVM?	18
Chapter 3 : Methodology	20
3.1 Introduction to Methodology	21
3.2 Flow Chart of Project	22
3.3 Flow Chart of Risk Assessment	24
3.4 Research Work	25
3.4.1 Identify the R_T and Calculation of R_1	26
3.4.2 Evaluate the R_1 for each type of Loss	27
3.5 Structure Characteristics	28
3.5.1 Dimensions	28
3.5.2 Soil Resistivity	29
3.5.3 Location Factor	29
3.5.4 P_B that a flash to a structure will cause physical	29
damage	
3.5.5 The annual Number of Dangerous Events	30
3.6 Internal Power System and Connected Power Line and	30
Internal Telecommunication System Characteristics	
3.6.1 Location Factor, Transformer Factor, Environment	31
Factor	
3.6.2 P_U of Injury to Living Beings due to Touch Voltage	31
3.7 Zones Characteristics	32
3.7.1 Reduction Factors	32
3.7.2 Risk of Fire	32
3.7.3 Special Hazard (hz)	33
3.7.4 Fire Protection	34
3.8 Collection Areas of Structure and Line	34
3.8.1 Equations for Collection Areas	36
3.8.2 Loss L_X in a structure	37
3.9 Expected Annual Number of Dangerous Event	38