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1. Introduction

In this letter, the classical susceptible-infectious-removed (SIR) epidemic models has been
solved using Daftardar-Gejji and Jafari method (DJM)(Daftardar-Gejji and Jafari, 2006). The
SIR model aims to predict the number of individuals who are susceptible to infection, are ac-
tively infected, or have recovered from infection at any given time. The SIR model is given by
the following system:

dx

dt
= −βx(t)y(t)

dy

dt
= βx(t)y(t)− γy(t) (1)

dt

dt
= γy(t)

where x, y and z represent the number of susceptible, infective and recovered at time t, respec-
tively. The parameter β represent transmission rate and γ represent recovery rate. This model
does not consider birth rate or death rate. Therefore, SIR model can be described as the simplest
model on an epidemic of a non-fatal disease.

2. Basic Idea of Daftardar-Gejji and Jafari Method

Consider the general functional equation (Hemeda and Eladdad, 2018):

u(x) = f(x) +N(u(x)) (2)

where N is a nonlinear operator from a Banach space B → B and f is a known function of the
Banach space B. The solution u(x) can be given in the form:

u(x) =

∞∑
i=0

ui(x) (3)

The nonlinear operator N can be decomposed as:

N

( ∞∑
i=0

ui(x)

)
= N(u0) +

∞∑
i=0

⎧⎨
⎩N

⎛
⎝ i∑

j=0

uj(x)

⎞
⎠−N

⎛
⎝ i−1∑

j=0

uj(x)

⎞
⎠
⎫⎬
⎭ (4)

Therefore, (2) is equivalent to:

∞∑
i=0

ui(x) = f +N(u0) +

∞∑
i=0

⎧⎨
⎩N

⎛
⎝ i∑

j=0

uj(x)

⎞
⎠−N

⎛
⎝ i−1∑

j=0

uj(x)

⎞
⎠
⎫⎬
⎭ (5)
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Then, the solution can be obtained from recurrence relation:

u0 = f,

u1 = N(u0), (6)

ur+1 = N(u0 + u1 + ...+ ur)−N(u0 + u1 + ...+ ur−1), r = 1, 2, ...

and

ui = f +N

( ∞∑
i=0

ui

)
. (7)

The r−term approximate solution of (2) and (3) is given by u(x) =
∑r−1

i=0 ui.

3. Results

We consider the epidemic model (1) with x(0) = 20, y(0) = 15 and z(0) = 10. Figure 1 show
the results for sixth terms approximation with a) β = 0.01 and γ = 0.02 and b) β = 1 and
γ = 1. It shows that when the β and γ parameters are relatively small, the solution given is
almost the same as the solution in Biazar (2006) and Rafei et al. (2007). But the increase to the
β and γ parameters causes the results to be unreasonable. This is in line with expectations by
Fernández (2009) for iterative methods such as DJM. The calculation algorithm has been coded
through MAPLE 2020 software.

a) β = 0.01 and γ = 0.02 b) β = 1 and γ = 1

Figure 1: Sixth terms approximation

4. Conclusion

In this study, DJM was applied to solve the epidemic model. The results show that the reliability
of the results is limited to certain parameters only i.e β = 0.01 and γ = 0.02. Therefore DJM
is not a method that can be used in all situations.
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