PREDICTION OF OPERATING PHOTOVOLTAIC MODULE TEMPERATURE USING HYBRID CUCKOO SEARCH ALGORITHM – ARTIFICIAL NEURAL NETWORK

This thesis is presented in partial fulfilment for the award of the Bachelor of Engineering (Hons.) Electrical of

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

NUR ZAHIDAH BINTI ZAINOL B. ENG (HONS) ELECTRICAL Faculty of Electrical Engineering UNIVERSITY TEKNOLOGY MARA MALAYSIA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah for given me strength to successfully complete this project. I would like to express my highest gratitude to my supervisor, Dr. Shahril Irwan Sulaiman and my co-supervisor, En. Zulkifli Othman for their constant guidance, invaluable knowledge, constructive idea and continuous supervision throughout the entire implementation and accomplishment of this project. They have encouraged me to explore various options in analysing, facts findings and problem solving.

I am deeply and forever indebted to my parent for their love, support and encouragement throughout my entire life. My mother, and my father, Zainol bin Mohd Isa deserve a special mention for their inseparable support and prayers. I am also grateful for the moral support from friends and everyone who are involved directly or indirectly with the completion and success of this project. It is almost impossible without the help and support and guidance from many individuals throughout the process.

I would like to extend my sincere thanks to Green Energy Research Centre (GERC) from making the data accessible for study. Last but not least, to fellow Electrical Engineering students, lecturers and those who has had provided the support needed in various form. This project would not have been a success if not for their generosity in sharing ideas and valuable experiences.

v

ABSTRACT

This project presents a hybrid Cuckoo Search-Artificial Neural Network (CS-ANN) for predicting the module operating temperature of a Grid-Connected Photovoltaic (GCPV) system. In this project, the ANN used ambient temperature (AT) and solar irradiance (SI) as the inputs and module temperature (MT) as the main output. Furthermore, Cuckoo Search (CS) was utilized to determine the optimal number of neurons, learning rate and momentum rate in the hidden layer throughout training process of Cuckoo Search such that Mean Absolute Percentage Error (MAPE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results indicated that the proposed hybrid CS-ANN had outperformed a hybrid Artificial Bee Colony-Artificial Neural Network (ABC-ANN) in producing lower MAPE. In addition, the coefficient of determination was discovered to be very close to unity such that a high prediction performance could be guaranteed.

Table of Contents	Page
APPROVAL	ii
DECLARATION BY SUPERVISOR	iii
DECLARATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
LIST OF FIGURES	ix
LIST OF TABLES	x
LIST OF ABBREVIATIONS	xi
CHAPTER 1: INTRODUCTION	
1.1 Photovoltaic Module Temperature	1-2
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Scope of Work	4-5
1.5 Organization of Thesis	6
CHAPTER 2: LITERATURE REVIEW	7
2.1 Types of Renewable Energy	8
2.1.1 Solar Energy	8
2.1.2 Biomass	9
2.1.3 Hydropower	9
2.1.4 Wind Energy	10
2.1.5 Other Sources (Geothermal, Wave and Tidal)	10
2.2 Photovoltaic System	
2.2.1 Photovoltaic Modules	11-13
2.3 Artificial Neural Network	13-14
2.4 Nature-Inspired Metaheuristic Algorithms	15

2.4.1 Artificial Bee Colony	15-16
2.5 Cuckoo Search	
2.5.1. Cuckoo Breeding Behaviour	16-17
2.5.2 Cuckoo Search Algorithm	18
CHAPTER 3: METHODOLOGY	19
3.1 Artificial Neural Network Process	20-23
3.2 Cuckoo Search Algorithm- Artificial Neural Network	
3.2.1 Cuckoo Search Algorithm	24-25
3.2.2 Hybrid Cuckoo Search-Artificial Neural Network	27-28
CHAPTER 4: RESULTS AND DISCUSSIONS	29
4.1 Mean Absolute Percentage Error (MAPE) performance of	30-31
CS-ANN using different population size	
4.2 Mean Absolute Percentage Error (MAPE) performance of	32
CS-ANN using different learning algorithm	
4.3 Summary of Mean Absolute Percentage Error (MAPE) and	33
Regression performance of CS-ANN throughout training and	
testing	
4.4 Mean Absolute Percentage Error (MAPE) performance of	34-35
CS-ANN and ABC-ANN during training and testing	
CHAPTER 5: CONCLUSION	
5.1 Conclusion	36
5.2 Recommendation for Future Work	37
REFERENCES	38-39
APPENDIX\CES	40
Appendix A: Sample Data Collected	41-46
Appendix B PV module Datasheets	47-48
Appendix C: Technical Paper	49-55