DEVELOPMENT OF ENERGY EFFICIENCY CONTROLLER USING PIC16F877A

This project report is presented in partial fulfillment for the award of the

Bachelor of Engineering (Hons.) Electrical

Of

UNIVERSITI TEKNOLOGI MARA

MOHAMED AL-HAFIZ BIN ZAINUDDIN
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM
SELANGOR, MALAYSIA
MAY 2010

ACKNOWLEDGEMENTS

Alhamdulillah thanks to Allah SWT by His grace I have completed my thesis successfully by time allocated.

First of all, I would like to take this opportunity to express my appreciation and thanks to my supervisor Mrs. Rahmatul Hidayah Salimin for her guides, advices and helps me to finish this project successfully. Besides that, I would like to thank to Mr. Mohd Zain Osman from BOSIM Department for his guides and helps me to get data reading on air-conditioner and light.

Special dedication to my parents Mr. Zainuddin Hussin and and also to my beloved sister and brother for their support and motivation for me to finish this project. I also like to thank to all my friends which spend their time helping me to finish this project (Mohamad Farid Hijjaz, Fuad Kamel Abbas and all FKE part 8 student). Thanks for everything.

May Allah bless all of you. Wassalam.

ABSTRACT

The word 'forgot' is seems to be a nature habit to human. The main purpose of this project is to develop energy efficiency controller to control electrical energy used by user efficiently. Sometimes, people do not aware to switch off the equipments such as light and air-conditioner before they leave their room. The concept of this project is to switch off the air-conditioner and lights when there are no users in the room and switch on the device automatically when a person enter the room. The system interface is using the peripheral interface controller (PIC) 16F877A for the sensor automation concept of the system. From the data collection, there are several assumptions been made such as calculation of current usage for air-conditioner at a classroom. The initial result of the energy efficiency controlled showed it can improve the efficiency of the energy.

TABLE OF CONTENT

CONTENT	
ACKNOWLEDGEMENT	\mathbf{v}
ABSTRACT	vi
LIST OF TABLE	vii
LIST OF FIGURE	
LIST OF SYMBOLS AND ABBREVIATIONS	ix
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Problem Description	3
1.3 Project Objective	3
1.4 Scope of Work	4
1.5 Organization of the Thesis	5
CHAPTER 2 LITERATURE REVIEW	
2.1 Light Control System	7
2.2 Calculation On The Cost Effectiveness	8
2.3 Peripheral Interface Controller (PIC)	9
2.4 Infrared Sensor (IR)	10
2.5 Relay	11
CHAPTER 3 METHODOLOGY	
3.1 Introduction	13
3.2 Shematic Diagram and PCB Layout Design	14

3.3	3 Hardware Development		16
	3.3.1	Infrared Sensor (IR)	17
	3.3.2	Comparator (LM393N)	18
	3.3.3	PIC Start-up Kits (SK40C)	20
	3.3.4	PIC 16F877A	21
3.4	Software	e Development	22
3.5	Data Co	llection	24
CH	APTER 4	RESULT AND CONCLUSION	
4.1	Introduc	tion	25
4.2	Circuitry	Testing	26
4.3	Data On	Lighting and FCU air-conditioner Current Usage	28
CH	APTER 5	CONCLUSIONS	
5.1	Introduc	tion	33
5.2	Conclusi	ion	33
CHA	APTER 6	FUTURE RECOMMENDATION	
6.1	Introduc	tion	33
6.2	Future R	Recommendation	33
REF	ERENCE	CS .	35
APF	PENDICE	S	