POWER SYSTEM FAULT DIAGNOSIS USING ARTIFICIAL NEURAL NETWORK (ANN)

This Project Report is presented in partial of fulfillment for the award of the Bachelor of Electrical Engineering (Honours)

UNIVERSITI TEKNOLOGI MARA

MOHD ASHRAF B MOHD ZAIN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN MALAYSIA

ACKNOWLEDGEMENT

Firstly, in the name of the Almighty I would like to express my thankful for His guidance generosity in giving me strength and courage to complete this thesis successfully from its planning until its finish touch in order to fulfill the requirement for Bachelor of Engineering (Hons.) in Electrical Engineering.

I would like to express my sincere thanks to my project supervisor, Miss Dalina Johari for hr constant encouragement, assistance and strong support in guiding me through the preparation of this project.

Finally, this project is specially dedicated to my loving parents, lecturers and also my friends and many other who somehow or rather had help me directly or indirectly in successful completion of my project and for those who loves me.

May Allah s.w.t bless you all.

ABSTRACT

In power system, the phenomenon of fault is a name given to a situation called a failure in the system. Most faults are the results of short circuits which include thunder and wind of storms. Faults are the major concern in power generation, transmission and distribution since they occur frequently and without warning. The classification of the transmission line faults which are bus voltage, fault and line current are very useful in monitoring and performance of relays, circuit breakers and other protection and control element.

This thesis presents the usage of Artificial Neural Network (ANN) as an approach for predicting the fault in a large interconnected transmission system. The ANN developed is based on a three-layered back-propagation algorithm. The ANN was designed using MATLAB version 6.0 which deals with fault diagnosis in power system. By using MATLAB software modules, the balanced and unbalanced fault cases were simulated. The data generated from this software are to be used as training and testing set in the ANN. The input parameters of the ANN included fault impedance and bus location while the output data will be the fault current, bus voltage, fault location and type of faults. The ANN is trained by Back Propagation Algorithm. MATLAB results were about fault current, bus voltage, fault location and type of faults. The results from ANN (target output) were expected to be same value with MATLAB output (desired output). If these two results are approximately same, ANN proved that Fault Diagnosis can be done by using this method.

iv

TABLE OF CONTENTS

DESCRIPTION	PAGE
PROJECT TITLE	
DECLARATION	
ACKNOWLEDGEMENT	
ABSTRACT	
TABLE OF CONTENTS	
LIST OF FIGURES	ix
LIST OF TABLE	X
LIST OF ABBREVIATIONS	xi
CHAPTER 1	
INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 SCOPE OF WORK	2
1.3 THESIS ORGANIZATION	3
	·
CHAPTER 2	4
LITERATURE SURVEY	4
2.1 INTRODUCTION	4
2.2 CONVENTIONAL APPROACH OF FAULT ANALYSIS	4
2.3 MODERN APPROACH OF FAULT ANALYSIS	5
2.3.1 Expert System	5
2.3.2 Earth Fault Indicator (EFI) Assistant Package	6
2.3.3 Power System Simulator	7
2.3.4 Fault Simulation and Intelligent Alarm Analyzer Software Package	8
2.3.5 Easy Power	9
2.4 QUALITY OF SUPPLY IN TENAGA NASIONAL BERHAD (TNB)	9
2.4.1 Causes of Fault	
2.5 WHAT IS FAULT IN POWER SYSTEM?	
2.6 FAULT CLASSIFICATIONS	

2.7 TECHNIQUES SOLUTION	15
2.7.1 Bus Impedance Matrix Method	15
2.8 SYMMETRICAL FAULT	16
2.9 UNSYMMETRICAL FAULT	17
2.10 SEQUENCE NETWORKS	
2.10.1 Sequence network for generator with a Line – to – Ground Fault	20
2.10.2 Sequence network for generator with a Line – to – Line Fault	21
2.10.3 Sequence network for generator with a Double Line - to - Ground Fault	22
2.11 ARTIFICIAL NEURAL NETWORK	23
2.12 WHY ANN AND WHY NOW ?	24
2.13 THE BACKPROPAGATION ALGORITHM	25
2.13.1 Forward Propagation Step	
2.13.2 Backward Propagation Step	
2.14 TRAINING THE ANN	29
2.14.1 Input Nodes of the ANN	
2.14.2 Output Nodes of the ANN	
2.14.3 Parameters of the ANN	

CHAPTER 3	
METHODOLOGY	
3.1 INTRODUCTION	32
3.2 PROCEDURE OF SIMULATION IN MATLAB	32
3.2.1 BALANCED FAULT	33
3.2.2 UNBALANCED FAULT	33
3.3 DESIGN AND SIMULATION IN ANN	36
3.3.1 Simulation Instrument	
3.3.2 Experiment	
3.3.3 Procedure of simulation in ANN	40

CHAPTER 444	
RESULT AND DISCUSSIONS	44
4.1 INTRODUCTION	44
4.2 RESULTS AND DISCUSSIONS ON FAULT ANALYSIS IN MATLAB	44