ARTIFICIAL IMMUNE SYSTEM OPTIMIZATION TECHNIQUE FOR OPTIMAL LOCATION AND PARAMETER SETTING OF UPFC

This thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA MALAYSIA

SITI NOOR AISHAH BT. MOHAMAD ARIFFIN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of ALLAH Most Gracious and Most Merciful

First of all I would like to record my grateful thanks to ALLAH the Al-Mighty with His Bless I have given the strength, good health and ability to complete this project with success and without having much problems.

I would like to express my gratitude and appreciation from the bottom of my heart to my project supervisor Prof. Dr. Titik Khawa Abd Rahman for her concern, kindness, valuable time of consultation and advice, patience and guidance in supervising my project from the beginning until the completion of the project.

A special thanks to my beloved family, especially to my parents who are the most important person in my life and greatest source of inspiration, give the moral and supports during this course and for this project happened.

I am also really thankful to Miss Norlee Husnafeza Binti Ahmad for her guidance and teaching me for MATLAB programming and not forget to thanks all the lecturers and my beloved friends for their support, motivation and valuable help given in all over the entire project.

Lastly, all the help, supports and contributions that give from all the above mention will hopefully reciprocated by the ALLAH.

Thank you very much.

SITI NOOR AISHAH BINTI MOHAMAD ARIFFIN *Faculty of Electrical Engineering Universiti Teknologi Mara (UiTM)* Shah Alam, Selangor Darul Ehsan

ABSTRACT

This project report is about to find optimal location for parameter setting of Unified Power Flow Controller (UPFC) at line data in transmission line from the bus system by using Artificial Immune System (AIS) Programming technique. The Unified Power Flow Controller is present by controlling the value of impedance at three line data to determine the best optimal location that have the minimum losses and costs for the system. A reliable method was present to meet the requirements by developing a Newton-Raphson based load flow calculation program through which control setting of UPFC can be determined directly. A MATLAB program has been developed to calculate the control setting parameters of the UPFC after the load flow is converged. Case studies have been tested using the IEEE 26 buses Reliability Test System. The objective functions implemented are minimizing the loss, minimizing the costs of generation and get the minimum voltage improvement to be achieved. Comparison was made in order to determine the best objective function to be used for solving this problem.

Keywords:

Unified Power Flow Controller (UPFC), Artificial Immune System (AIS), Flexible AC Transmission System (FACTS).

TABLE OF CONTENTS

PAGE

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURE	vii
LIST OF TABLES	viii
SYMBOLS AND ABBREVIATIONS	ix

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Objective Projects	2
1.3	Thesis Organization	2

CHAPTER 2

LITERATURE REVIEW

2.1	UNIF	UNIFIED POWER FLOW CONTROLLER		
	2.1.1 Introd		action to UPFC as One of the FACTS Device	
		2.1.1.1	Definition to Unified Power Flow Controller	5
		2.1.1.2	The Definite Orientation and Capacity Control for	
			Branch Power	6
		2.1.1.3	Entirety Control for Power Flows	6
	2.1.2 Operating UPFC Model Analysis		7	
	2.1.3	UPFC in	Power Flow Studies	8
2.2	ARTI	FICIAL	IMMUNE SYSTEM	

2.2.1	Introduction to Artificial Immune System	10
2.2.2	Concept of Artificial Immune System	12

	2.2.3 The Outline of Artificial Immune System					
	2.2.4	The Perspective of Artificial Immune System	17			
		2.2.4.1 Clonal Selection	17			
		2.2.4.2 Immune Networks Theory	18			
		2.2.4.3 Negative Selection Mechanism	18			
		2.2.4.4 Mutation	19			
	2.2.5	5 Comparison of Artificial Immune Systems to Genetic				
		Algorithms and Neural Networks	20			
2.3	POW	ER FLOW ANALYSIS				
	2.3.1	Introduction	22			
	2.3.2	Newton-Raphson Method				
		2.3.2.1 Introduction	23			
		2.3.2.2 The Newton-Raphson Iteration	23			
	2.3.3	Power Flow Solution	24			
	2.3.4	Power Flow Programs	25			
	2.3.5	Data Preparation	26			
2.4	OPTIMIZATION TECHNIQUE					
	2.4.1	Introduction	29			
	2.4.2	Overview of Particle Swirl Algorithm	29			
2.5	MATLAB PROGRAMMING					
	2.5.1	Introduction	31			
	2.5.2	Overview of the MATLAB environment	31			
	2.5.3	The MATLAB System	32			
CHA	APTER :	3				
ME	ГНОДО	DLOGY				
	3.1	Introduction				
	3.2	Development of Artificial Immune System				
		3.2.1 Algorithm of Artificial Immune System	36			
		3.2.2 Development of AIS for Representation of UPFC	38			
		3.2.3 Random number generation	40			

- -