DESIGN A GRID CONNECTED PHOTOVOLTAIC SYSTEM BY USING MICROSOFT EXCEL – VISUAL BASIC INTERFACING

This thesis is presented in partial of fulfilment for the award of the

Bachelor of Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA

MALAYSIA

MOHD NAZRIE BIN GHAZALI (2006135099) Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam, Malaysia MAY 2010

ACKNOWLEDGEMENT

All the praise and thanks is to Allah SWT, the lord of the universe the Beneficent, the Merciful for all gift endowed upon me and for giving the health and strength to complete these studies as well as to complete this final year project. Alhamdullilah, this final year project is able to be completed within the time frame and I have gaining valuable experiences and knowledge throughout completing this project.

Here, I would like to express my special sincere appreciation and gratitude to my supervisor, Encik Khairul Safuan bin Muhammad for guiding me throughout the preparation and completion of this project.

Special thanks to Assoc. Prof. Dr Ahmad Maliki Omar, which is the on-grid class lecturer and one of leader of Photovoltaic Monitoring Centre (PVMC) Research team for his teaching and guidance me to know in deeper on the photovoltaic system design.

Also special thanks to my beloved parents, Ghazali bin Mat Daud and Hamidah binti Harun for their prayers and special encouragement to me in order to complete this final year project. Last but not least, thanks to all my friends for their ideas, suggestions and assistance in completing this project.

ABSTRACT

This thesis presents the design of a Grid Connected Photovoltaic System (GCPS) by using Microsoft Excel-Visual Basic interfacing. The Microsoft Excel is used as calculation engine where the visual basic is used as Graphic User Interface (GUI). The GCPS sizing of photovoltaic (PV) with is used to optimize the usage of inverter and PV modules. Designing involves determination number of modules required to meet the required amount of power and selection of type inverter. Configuration of array which is series and parallel combination can be determined. Therefore the power from the PV array can be used to determine suitable inverter. A GCPS design can be used to minimize the computation for module Alpha 165 and inverter Solarmax 6000C.

TABLE OF CONTENTS

CHAPTER	TITLE			PAGE	
				i	
	Ackr	owledge	ement	ii	
	Abst	ract		iii	
	Table	e of Cont	ents	iv	
	Abbreviations List of Figures				
	List of Tables			X	
1	INT	1			
	1.1	Introd	uction of The Research	1	
	1.2	Objec	tive of The Research	2	
	1.3	Scope	s of The Research	2	
	1.4	Organ	ization of Thesis	3	
2	BACKGROUND THEORY			4	
	2.1	Photo	voltaic Technology	4	
	2.2	Solar	Radiation	5	
		2.2.1	Earth Declination	7	
	2.3	Circui	t Model of PV Cell	8	
	2.4	2.4 IV Characteristic		12	
		2.4.1	Effect Due to Temperature	11	
		2.4.2	Effect Due to Shading	11	
		2.4.3	PV modules	12	
		2.4.4	Inverter	13	
	2.5	PV Sy	ystem Configuration	15	
		2.5.1	Hybrid PV System	15	
		2.5.2	Stand Alone PV System	18	
		2.5.3	Grid Connected PV System	19	

МЕТ	HODOI	21	
3.1	Basic I	21	
	Photo	voltaic System (GCPS)	
	3.1.1	The Calculation On A Grid Connected	22
	Photo	voltaic System Design	
3.2	The Si	26	
	3.2.1	The Main Control Of VB	26
	3.2.2	The Simulation Flowchart	29

3

5

4	RES	JLTS AND DISCUSSION		
	4.1	Result From Simulation By Using Microsoft Excel	30	
	4.2	Result From Simulation By Using Visual Basic 6.0	33	

	CON	34	
	5.1	Conclusion	34
	5.2	Recommendation for Future Development	35
	References		36
Appendices			38