REDUCING HARMONIC IN MINI CAPACITOR BANK WITH SHUNT ACTIVE FILTER IN SINGLE PHASE SYSTEM

This thesis is presented in partial fulfilment for the award of the *Bachelor* of Electrical Engineering (Hons)

of

UNIVERSITI TEKNOLOGI MARA MALAYSIA

SYAKIB ARSALAN BIN KAMARUDIN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGMENT

In the name of ALLAH S.W.T, The most Beneficent, The most Merciful. It is with the deepest sense of the Almighty Allah that gives me the strength and ability to complete this project. All good aspirations, devotions and prayers are due to ALLAH whose blessing and guidance have helped me throughout the entire project.

I would like to acknowledge and express my sincere gratitude towards my supervisor Pn Wan Noraishah Binti Wan Abdul Munim for her concern, valuable time of consultation and advice, guidance and patience in supervising my project from the beginning until the completion of this project thesis.

My appreciation goes to staff from Unit Facility of UiTM Shah Alam for their dedication in giving me ideas, suggestions and getting information for my final year project.

Last but not least, my special thanks to my partner, Siti Hajar Binti Nordin for the valuable help and motivation given in completing this project.

V

ABSTRACT

The presence of reactive power (VAR) must be made minimum to optimize the use of available power from TNB. Nowadays, people are more concern on power quality and utilization. Thus, Mini Capacitor Bank (MCB) is an outstanding tool that certain households in the community use as a power-saving devices in order to optimize the utilization of electricity power. However, the effectiveness by using this kind of method still faced the problem. One of the big issues is the harmonic impact due to MCB characteristics act as capacitive load when it deals with non-linear equipments. In this paper the shunt active filter (SAF) has been designed using MATLAB/Simulink R2012a. The simulation results show that SAF gives THD of 1.55%.

TABLE OF CONTENTS

APPI	ROVAL	II
DEC	LARATION	III
DED	ICATION	IV
ACK	NOWLEDGEMENT	V
ABS	ГКАСТ	VI
LIST	OF FIGURES	X
LIST	OF TABLES	XII
LIST	OF SYMBOLS	XIII
LIST OF ABBREVIATIONS		
CHAPTER 1		
INTH	RODUCTION	
1.1	BACKGROUND OF STUDY	1
1.2	PROBLEMS STATEMENT	4
1.3	OBJECTIVES	4
1.4	SCOPE OF WORK	5
1.5	THESIS ORGANIZATION	6

CHAPTER 2

LITERATURE REVIEW

2.1	MINI CAPACITOR BANK IN THE SYSTEM	7
2.2	CAPACITOR CONSTRUCTION	9
2.3	RATING CAPACITOR	10
2.4	INSTALLATION OF CAPACITORS	10
2.5	POWER FACTOR IN THE SINGLE PHASE SYSTEM	12
2.6	HARMONIC IN POWER SYSTEM	14
2.7	DEFINITION AND CONCEPTS	14
2.8	HARMONIC SOURCE	15
2.9	EFFECTS OF HARMONICS	16
2.10	IEEE STANDARD 519-1992 HARMONIC LIMITS	15
2.11	HARMONIC MITIGATION TECHNIQUES	20
2.11.	1ACTIVE POWER FILTER	20
2.11.	2CONTROL TECHNIQUES FOR ACTIVE FILTER	22

CHAPTER 3

METHODOLOGY

3.1	INTRODUCTION	23
3.2	RESEARCH PROCEDURE	23
3.3	POWER QUALITY ANALYZER (FLUKE 1750)	25
3.4	SINGLE PHASE MINI CAPACITOR BANK	27
3.5	COMPARISON SYSTEM	27
3.6	MATLAB SIMULINK SOFTWARE	31
3.7	SINGLE PHASE SUPPLY WITH NON LINEAR LOAD	31
3.8	MATHEMATICAL MODEL FOR SHUNT ACTIVE FILTER	33