A SINGLE-PHASE BRIDGE INVERTER FOR GRID-CONNECTED PHOTOVOLTAIC (PV) APPLICATION

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons) Electrical Universiti Teknologi Mara

KHAIRUL SHAKIRIN BIN MOHAMED FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR MALAYSIA

ACKNOWLEDGEMENT

All praises be to Mighty Allah S.W.T, the most Gracious and Most Merciful for the strength and blessing me throughput the entire research and completion of this thesis. Peace is upon our prophet Muhammad S.A.W whose has given light to mankind. This thesis is the efforts of a number of people. Here I would like to express my sincere appreciation to each and everyone involved in the completion of this thesis.

Firstly, I would like to express my deepest appreciation to my parents and family, for the understanding and encouragement, and for being my source inspiration. I dedicated this piece of work to all of them.

I would like to express my sincere appreciation and gratitude towards my supervisor Prof. Madya Tn. Haji Ishak Bin Ismail for the following chance to work under his guidance, ideas, comments, opinion and full support in completing this thesis. Without his this thesis might not be done successfully. Besides that, I would like to express my gratitude to Prof. Madya Bibi Norasiqin Sheikh Rahimullah and Mr. Rijalul Fahmi B. Mustapa for their guidance and comment for the final year project presentation and technical report in completing this project.

I also like to forward my special thanks to technicians and master students in faculty of electrical, who have gone out to give me the invaluable information needed on software configuration, hardware connection and spend their precious time in helping me out. Last but not least, I would like to take this opportunity to express my appreciation to those that have directly or indirectly contributed towards the progress of my thesis.

Thank You.

Khairul Shakirin Bin Mohamed Faculty of Electrical Engineering Universiti Teknologi MARA

ABSTRACT

This paper proposed a grid-connected photovoltaic (PV) power conversion system based on a Single-Phase Bridge Inverter that converts DC to AC power. The topology is based on a Single-Phase full-Bridge DC-AC IGBT Inverter. The output voltage source from boost converter was to be used in the system for the input voltage source of PV inverter. The boost converter must maintain its voltage output that comes from the PV array solar power for the inverter able to generate 240V, 50Hz, 36kW. For this project a voltage source inverter with fixed DC link will be operated with DC voltage held constant. The Sinusoidal Pulse Width Modulation (SPWM) technique was used to synchronize the output voltage and frequency to the grid. A Microcontroller 16F877A was used to generate the required pulses to control the output of the inverter. MATLAB SIMULINK and PSIM simulations were used to compare with the experimental hardware result.

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	х
LIST OF SYMBOL	xi
LIST OF APPENDICES	xii

CHAPTERDESCRIPTIONPAGE1INTRODUCTION

1.1	Background of Project	1
1.2	Scope of work	3
1.3	Objectives	3
1.4	Project Limitation	4

CHAPTER	DESCRIPTION	PAGE
2	LITERATURE REVIEW	

2.1	Inverter Topologies	5
2.2	Technology of The Inverter	6
2.3	Single-Phase Inverter Topology	6
	2.3.1 Half Bridge Inverter	6

	2.3.2 Full Bridge Inverter	7	
2.4	Pulse Width Modulation (PWM) Scheme	8	
2.5	Natural (Sinusoidal) Sampling		
2.6	Maple: SPWM, Sinusoidal Pulse Width		
	Modulation	11	
2.7	Microcontroller (PIC16F877A)	12	
2.8	Gate Drive	16	
2.9	How to Select The Bootstrap Components	17	
2.10	Device Description	19	
	2.10.1 Blocking Operation	20	
	2.10.2 On-state Operation	21	

CHAPTER	DESCRIPTION	PAGE
3	METHODOLOGY	

3.1	Introduction		23
3.2	Designed Circuit System Based on Literature		
	Studies and Theories		
	3.2.1	Controller Circuit Designed	25
	3.2.2	Gate Driver Circuit Designed	26
	3.2.3	Power Circuit Designed	28
	3.2.4	Actual Inverter Designed	30
3.3	.3 Software Developments		30
	3.3.1	Microchip MPLAB IDE	31
	3.3.2	Boot Loader	31
	3.3.3	PICkit 2 Programmer	32
3.4	Simul	ation Analysis	33
	3.4.1	MATLAB Simulation Analysis	33
	3.4.2	PSIM Simulation Analysis	35
3.5	Created the Controller Signal Based on		
	Programmed of PIC16F877A		