ALLOCATION AND SIZING OF DISTRIBUTED GENERATION (DG) USING PARTICLE SWARM OPTIMIZATION (PSO) TECHNIQUE FOR LOSS MINIMIZATION

Thesis is presented in partial fulfillment for the award of the Bachelor in Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA

JUNAINAH BINTI PARDI Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam, Malaysia DECEMBER 2009

ACKNOWLEDGEMENT

~In the name of Allah, Most Beneficent, Most Merciful~

All the praises and thanks to Him, the Lord of the universe and peace be upon His messenger Muhammad S.A.W, the last of the prophets and the righteous followers. I would like to express Syukur Alhamdulillah for the patience, strength, perseverance and motivation towards the accomplishment of this project.

I would like to express my countless appreciation and gratitude to my final year project supervisor, Assoc. Prof. Dr. Ismail Bin Musirin for his continual guidance and invaluable ideas and advice which has helped me tremendously in completing this project. Thank you for accepting me as your final year project supervisee.

I would like to express my deepest thanks to all my colleagues or course mates in UiTM especially to all the PLK students who had shared with me their valuable knowledge and advice in Electrical Engineering towards the completion of this project.

My gr atitude also goes to all lectures in Faculty of Electrical Engineering, UiTM and to those who have devoted their time either directly or indirectly, for their ideas, support and contribution towards the success of this project. Last but not least, to all my family members and to both of my parents, En. Pardi Bin Marto and Pn. Misnah Binti Rajak for their understanding and support throughout the years. All of you are the source of my strength and inspiration.

"May Allah bless and reward them for their generosity".

Junainah Binti Pardi Universiti Teknologi MARA, Shah Alam

ABSTRACT

Distributed generator (DG) is playing major role to supply energy resources and also for the development of co-generation plant which is absolutely very important in the electric power systems of the near future. The study involved in this project is to determine the optimal allocation and sizing of the DG in order to minimize the losses in the system.

Fast Voltage Stability Index (FVSI) technique has been used with the objective to identify the suitable location for the distributed generation in the networks. FVSI is used as the measuring instrument in predicting the sensitive lines which will be used to identify the location for DG installation. Once the locations are determined, Particle Swarm Optimization (PSO) technique is developed to identify the optimal size of the DG. It is an algorithm that represents the behavior of a flock of birds or a school of fish.

The feasibility of the proposed method is considered by using the fitness function in PSO technique to solve the load flow calculations for decision-making. In order to realize all the proposed technique, MATLAB programming software is used to develop the programming codes. The effectiveness of the proposed technique has been validated on standard IEEE 12-bus distribution system.

The obtained results show that the choice of the optimal locations and sizing of the DGs in the distribution system had minimized the total loss.

Keyword: Fast Voltage Stability Index (FVSI), Optimal allocation of DG units, Particle Swarm Optimization (PSO)

TABLE OF CONTENTS

CHAPTER		LIST OF TITLE	PAGE		
	DECLARATION		i		
	DEDI	ii			
	ACKNOLEDGEMENT		iii iv v vii vii		
	ABST				
	TABI				
	LIST				
	LIST				
	ABBI	REVIATIONS	ix		
1.0	INTR				
	1.1	Introduction	1		
	1.2	Objective of Project	3		
	1.3	Scope of Project	3		
	1.4	Organization of thesis	4		
2.0	LITE	RATURE REVIEWS			
	2.1	Introduction	5		
	2.2	Distributed Generation (DG)	5		
		2.2.1 Advantages of DG units	7		
		2.2.2 Disadvantages of DG units	8		
	2.3	Particle Swarm Optimization in Power System	9		
3.0	METHODOLOGY				
	3.1	Introduction	10		
	3.2	Research Design	11		
	3.3	Fast Voltage Stability Index (FVSI)	13		
	3.4	Initialization	14		
	3.5	Particle Swarm Optimization (PSO) Algorithm	17		

4.0 **RESULTS AND DISCUSSION**

5.0

4.1	Introduction	22
4.2	FVSI	22
4.3	PSO	23
4.4	Case A: Analysis of the losses with Three Swarm Sizes	23
	4.4.1 Loading Condition at Bus 4	24
	4.4.2 Loading Condition at Bus 5	26
	4.4.3 Loading Condition at Bus 6	28
4.5	Case B: Analysis of the losses with Four Swarm Sizes	30
	4.5.1 Loading Condition at Bus 4	30
	4.5.2 Loading Condition at Bus 5	32
	4.5.3 Loading Condition at Bus 6	34
CON	CLUSION AND RECOMMENDATION FOR	
FUTU	JRE WORK	
5.1	Conclusions	36

5.2	Recommendation For Future Work	37

REFERENCES38**APPENDICES**40