STUDY AND ANALYSIS INDUCTION HEATING COOKER USING HIGH FREQUENCY RESONANT CONVERTER

This project thesis is presented in partial fulfilment for the award of the

Bachelor in Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA (UITM)

MOHAMMAD BIN SAIDIN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR

ACKNOWLEDGEMENT

Praises to Allah S.W.T, for the strength and blessing through out the entire research and completion of this project. Peace be upon Prophet Muhammad S.AW, who had given light to mankind.

I would like to express my gratitude and sincere appreciation to my supervisor, Dr. Mohammad Nawawi Bin Seroji for his suggestions, guidance and invaluable advice throughout the preparation and completion of my final year project.

My deepest appreciation goes to my family, especially to my beloved wife, Pn. Nurul Hawa Binti Othman for prayers, inspiration, and love in nurturing me to be who I am today.

Last but not least, credits to all my friends for their ideas, suggestions and assistance in completing this project. With honest I have to said a lot of thank you for them.

Thank you

Mohammad Bin Saidin

ABSTRACT

This project studies the concept of resonant converter for induction cooker. Analysis is also performed on topologies of resonant converter, namely half-bridge resonant converter and quasi resonant converter. On top of this, methodology of controlling power intensity is furthered analysed and discussed. In order to validate the analysis result, case study on existing induction cooker using quasi resonant converter is also been performed.

In other hand, by using program PSIM, some simulation that related with this topologies of resonant converter that aim to get more understanding and the synchronization between practical and theory of this Induction Heating.

TABLE OF CONTENTS

CHAPTER	LIST OF TITLE			PAGE		
	DEC	i				
	DED	ii iii iv v - vi vii				
	ACK					
	ABST					
	TABI					
	LIST					
	LIST	LIST OF TABLE				
1.0	INTRODUCTION					
	1.1	Introd	uction	1 - 2		
	1.2	Aim a	nd Objective	2		
	1.3	Thesis	Layout	3		
2.0	LITE					
	2.1	Induction Heating		4		
		2.1.1	Basic Concept	4 - 5		
		2.1.2	Electromagnetic Induction	5		
		2.1.3	Skin effect	5 - 6		
	2.2	Power	System	6		
		2.2.1	Theory	6 - 7		
		2.2.2	Resonant Converter	7 - 8		
	2.3	Topolo	Topology of Resonant Converter			
		2.3.1	Half-Bridge Series Resonant Converter	9 - 11		
		2.3.2	Quasi-Resonant Converter	12 - 15		
	2.4	Power	Level Control	16 - 17		
3.0	мет	HODOI	LOGY			

3.1	Research Methodology	18 - 19
3.2	Simulation of Quasi-Resonant Converter	20
3.3	Case Study	21

4.0	RESULTS AND DISCUSSION							
	4.1	Simul	22 - 23					
	4.2	Case S	23					
		4.2.1	Resonant Converter	23 - 25				
		4.2.2	Safety Features	26				
		4.2.3	Power Level Control	26				
		4.2.4	Other Design Features	26 - 27				
5.0	CON	CLUSI	ON AND FUTURE DEVELOPMENT					
	5.1	Concl	usion	28				
	5.2	Recor	nmendation For Future Work	28 - 29				
REFERENCE				30				

APPENDIX

31 - 32