SOLVING UNIT COMMITMENT PROBLEM WITH SOLAR PLANT BY USING IMPROVED EVOLUTIONARY PROGRAMMING

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honors) Electrical FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

MOHAMAD IZAZUDDIN BIN HASSAN 2010870326

Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA MALAYSIA 40450 SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

I would like to thank to the Almighty Allah, who in his infinite mercy of the strength, health, endurance and foresight to undertake this project and complete it to the satisfaction of Universiti Technology MARA.

I would like to acknowledge most especially, the contribution of En. Muhammad Nazree bin Che Othman for his guidance in the process of completing this project. Also, my appreciation to all of my colleagues for assisting with relevant materials.

Finally, I thank all those who in one way or the other, have contributed to the successful completion of this work, may God bless Amin.

ABSTRACT

The aim of this study is to solve the Unit Commitment Problem with Solar Plant using the Improved Evolutionary Programming technique. The objective of this study is to search for minimum operational cost while satisfying the ranging load demand, to compare the performance of Improve Evolutionary Programming with Evolutionary Programming before installing Solar Plant and after the installation. The constraints considered in this research include spinning reserve margin, load demand, power and reserve limit, and also start-up cost. The improved technique is based on conventional technique where, the only difference is that in the initialization process instead of generating 20 population this Improve Evolutionary Programming generating 100 populations to have a wide range of data and from this it will select the best possible data combination. It also consists of three main steps, initialization, mutation, selection. The result obtains shown an improvement in performance of Improve Evolutionary Programming are shown [1, 2].

TABLE OF CONTENTS

APPROVAL	· I
DECLARATION	II
ACKNOWLEDGEMENT	III
ABSTRACT	IV
TABLE OF CONTENTS	V
LIST OF FIGURES	VIII
LIST OF TABLES	IX
LIST OF SYMBOLS AND ABBREVIATIONS	X

CHAPTER 1

INTRO	DUCTION		1
1.1	BACKGROUND OF STUDY		1
1.2	PROBLEM STATEMENT		2
1.3	OBJECTIVE		3
1.4	SCOPE OF STUDY	t status t	3
1.5	SIGNIFICANT OF STUDY		5
1.6	THESIS ORGANIZATION		6

1

СНАРТ	ER 2	8
LITERA	ATURE REVIEW	8
2.1	INTRODUCTION	8
2.2	UNIT COMMITMENT	8
	2.2.1 ON-OFF STATE AND UC ECONOMIC DISPATCH	9
2.3	DETERMINISTIC OPTIMISATION TECHNIQUE	10
	2.3.1 DYNAMIC PROGRAMMING	10
	2.3.2 PRIORITY LISTING	11
	2.3.3 MULTI AGENT	12
	2.3.4 PARTICLE SWARM OPTIMIZATION	14
2.4	EVOLUTIONARY ALGORITHM OPTIMIZATION TECHNIQUE	15
	2.4.1 EVOLUTIONARY PROGRAMMING	15
	2.4.2 IMPROVE EVOLUTIONARY PROGRAMMING	16
2.5	SOLAR PLANT	16
2.6	CHAPTER CONCLUTION	17

CHAPTER 3

18

METH	DDOLOGY	18
3.1	INTRODUCTION	18
3.2	RESEARCH PROCESS	18
3.3	PROBLEM FORMULATION	22
	3.3.1 OBJECTIVE FUNCTION	22
	3.3.2 CONSTRAINS	23
3.4	TEST SYSTEM DATA	25
	3.4.1 10-UNIT THERMAL TEST SYSTEM	25
	3.4.2 1-UNIT SOLAR PLANT	27
3.5	EVOLUTIONARY PROGRAMMING	27
3.6	IMPROVE EVOLUTIONARY PROGRAMMING	30
3.7	I-EP TO SOLVE UC PROBLEM	32
3.8	CHAPTER CONCLUTION	35