DYNAMIC SIMULATION OF TRANSFORMERS

This thesis is presented in partial fulfilment for the award of the Bachelor in Electrical Engineering (Hons.) of UNIVERSITI TEKNOLOGI MARA (UiTM)

ACKNOWLEDGEMENT

In the Name ALLAH S.W.T

Most Gracious Most Merciful

First of all, I would like to express my sincerest appreciations and gratitude towards my honourable supervisor, Prof. Madya Mohd Khayat Bin Idris for his generous contribution in providing important ideas and advices, as well as his willingness to guide and help in completing this project. Without his sheer determination and cooperation, this project would not have been completed in the first place.

I would also like to extend my deepest appreciations to all my lecturers who had taught me with priceless knowledge and experience as well as advices during the completion of this project, the helpful library staffs and colleagues for sharing their information and the Faculty of Electrical Engineering for providing the required materials in order to complete this thesis.

I am also indebted to Ms. Norfadzilah Bte. Abd. Razak for her moral support, kind advices as well as bright ideas and to all the parties involved, either directly or indirectly in making this project a success.

Azirin Bin Sulaiman Rasul

Faculty of Electrical Engineering Universiti Teknologi MARA (UiTM) Shah Alam, Selangor Darul Ehsan September 2002

ABSTRACT

This project is about dynamic simulation of transformers' various connections using a simulation software program. It covers modelling of transformer and simulating its different types of connections namely two-winding transformer, autotransformers and three-phase transformer. Simulation and testing at different operating conditions for single-phase two-winding transformer such as short-circuit, open-circuit, *RL* and *RC* load terminations, in-rush current, dc-bias core saturation, and transformer load tests with the inclusion of core saturation are developed and performed. Ratio tests for autotransformers and three-phase transformer are also included in the simulations. Simulation and analysis of zero-sequence current components during balance and unbalance conditions for Delta-Wye three-phase transformer are included in the scope of this project. The results that were obtained through these simulations and tests are highly accurate and follow the actual characteristics and behaviour of actual transformers, such as development of inrush current, dc bias and harmonics in currents.

TABLE OF CONTENTS

CHAPTER			PAGE		
	LIST	OF FIGURES	vii		
	LIST	OF TABLES	ix		
	LIST	OF ABBREVIATIONS	x		
1	INTRODUCTIONS				
	1.1	Introduction	1		
	1.2	Reviews	1		
		1.2.1 Dynamic system simulation	2		
		1.2.2 Transformers	2		
	1.3	Scope of Work	3		
	1.4	Thesis Overview	4		
2	LITERATURE REVIEW				
_	2.1	Transformer	5		
		2.1.1 Magnetic circuit	5		
		2.1.2 Sinusoidal excitation	8		
		2.1.3 Ideal transformer	9		
		2.1.4 Practical transformer	11		
		215 Ferromagnetic core properties	14		
		2.1.6 Test determination of transformer parameters	15		
		2.1.7 Inrush current	17		
		2.1.8 Waveform distortions in transformers	18		
		2.1.9 Autotransformers	19		
		2.1.10 Three-phase transformers	21		
	2.2	Dynamic System Simulation	24		
		2.2.1 Introduction to MATLAB/SIMULINK	24		
		2.2.2 Modelling dynamic systems	31		
3	MET	HODOLOGY			
2	3.1 Mathematical Descriptions				
	3.2	Core Saturation	43		
	3.3	Load Models	46		
	0.0	3 3 1 Purely resistive load	46		
		3.3.2 Inductive load	47		
		3.3.3 Capacitive load	48		
	3.4	Autotransformers	49		
		3.4.1 Step-down autotransformer	49		
		3.4.2 Step-up autotransformer	50		
	3.5	Three-Phase Transformer	51		

v

4	SIM	SIMULATION AND TESTING				
	4.1	Introduction	52			
	4.2	Short-Circuit, RL and RC Load Terminations	52			
	4.3	Open-Circuit Termination, In-rush and DC Bias Core				
		Saturation	54			
	4.4	Autotransformer Simulations	57			
	4.5	Three-Phase Transformer Simulations	59			
	4.6	Transformer Tests	62			
5	RES	RESULTS AND ANALYSIS				
	5.1	Introduction	67			
	5.2	Short-Circuit, RL and RC Load Terminations	67			
	5.3	Open-Circuit Termination, In-rush and DC Bias Core				
		Saturation	68			
	5.4	Autotransformer Simulations	71			
	5.5	Three-Phase Transformer Simulations	71			
	5.6	Transformer Tests	72			
6	CON	CLUSION	80			
7	REFI	ERENCES	81			
	APPI	ENDIX I – SIMULINK models of transformers				

APPENDIX II – M-file Sources APPENDIX III – Test results

vi