TRANSIENT RESPONSE STUDY OF INDUCTION MOTOR

UŞING MATLAB/SIMULINK

This project report is represent in partial of fulfilment for the award of the

Bachelor of Engineering (Hons.) Electrical

UNIVERSITI TEKNOLOGI MARA

MALAYSIA

FARHANA BINTI AHMAD B ENG (HONS) ELECTRICAL Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

In the name of Allah S.W.T Most Gracious Most Merciful

Alhamdullilah to Allah who has gives me the time and ability to complete this thesis project. I would like to acknowledge with gratitude the help, guidance, comments, suggestions and encouragement to those who had give me much invaluable support in the preparation of this project.

My deepest gratitude is expressed to my main project supervisor, Puan Rahmatul Hidayah Salimin for his advice, guidance, suggestion and idea during the progress of this project. His profound academic background and insight into monitoring system gave me great help when I was confusing.

I would like to extend my thanks and grateful to all those who have assisted in this work through supplying the information, providing the application software and technical assistance. I express my deepest thanks to my family for their moral support and encouragement; my friends who have contribute information, suggestion, time and effort directly or indirectly in this progression of this project. Honestly I am grateful for all the support and favours, thank you and may ALLAH S.W.T bless you all.

Wassalam

FARHANA AHMAD

Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, SELANGOR DARUL EHSAN

ABSTRACT

This project investigates the nature of transient phenomena found in an induction motor. Electric machines play an important role in industry as well as our day-to-day life. They are used to generate electrical power in power plants and provide mechanical work in industries. The induction machine is considered to be basic electric machines. The present of transient phenomena is not acceptable. It covers the background review of induction motors and the type of induction motor modelled. Parameters are extracted from the selected induction motor by the means of experimental results while some are synthetic parameter values. The simulation by using MATLAB is used in order to understand on the effect of the transient response.

TABLE OF CONTENTS

CONTENTS			
DECLARAT	ION	i	
ACKNOWL	EDGEMENTS	ii	
ABSTRACT TABLE OF CONTENTS			
TABLE OF CONTENTS			
LIST OF FIGURE			
LIST OF TABLE			
ABBREVIATION			
CHAPTER			
CHAPTER 1			
INTRODUC	CTION		
1.1	BACKGROUND	1	
1.2	OBJECTIVES	2	
1.3	SCOPE OF WORK	2	
1.4	THESIS OVERVIEW	3	
CHAPTER 2			
LITERATU	RE REVIEW		
2.1	LITERATURE REVIEW	4	
2.2	OVERVIEW OF MATLAB/SIMULINK	4	
2.3	INTRODUCTION TO TRANSIENT RESPONSE IN	5	
	INDUCTION MOTOR		
2.4	EQUIVALENT CIRCUIT OF INDUCTION MOTOR	7	
2.5	INDUCTION MACHINE TORQUE AND POWER	7	
2.6	INDUCTION MACHINE EFFICIENCY	12	
2.7	DYNAMIC PERFORMANCE OF INDUCTION MOTOR	13	
2.8	TEST TO DETERMINE EQUIVALENT CIRCUIT	15	
	,		

	2.8.1	No-Load Test	15	
	2.8.2	Blocked-Rotor Test	17	
	2.8.3	DC Resistance Test	19	
CHAPTER 3				
METHODO	LOGY			
3.1	TRANSIENTS RESPONSE 24			
3.2	EXPERIMENTAL 2			
3.3	MATLAB/SIMULINK 2			
3.4	MODELLING AND SIMULATION 22			
3.5	INDUCTION MOTOR MODEL 2			
3.6	SIMULINK IMPLEMENTATION			
	3.6.1	Field-Oriented Control Block (FOC)	26	
	3.6.2	abc-syn Conversion Block (abc2qds block)	27	
	3.6.3	syn-abc Conversion Block (qde2abc block)	29	
	3.6.4	Induction Machines in Stationery qdo Block	31	
3.7	MATH	HEMATICAL SIMULATION	32	
3.8	FLOW CHART 3			
CHAPTER 4				
RESULT A	ND DIS	SCUSSION		
4.1	EXPERIMENTAL RESULT			
	4.1.1	No-Load Test	38	
	4.1.2	Blocked-Rotor Test	38	
	4.1.3	DC Resistance Test	39	
4.2	SIMULATION RESULT			
	4.2.1	Steady-State Characteristic	42	
	4.2.2	Simulated of Start-up and Loading Transients with	43	
		Field-Oriented Control		
	4.2.3	Response to Changes in Reference Speed with No-Load	47	
CHAPTER 5				
CONCLUSI	ON AN	ID FUTURE DEVELOPMENT	51	