STUDY ON THE EFFECTIVENESS OF COMMERCIAL AVAILABLE VOLTAGE REGULATOR

This report is presented in partial fulfilment for the award of Bachelor of Electrical Engineering (Hons) Universiti Teknologi MARA

ASRI BIN ANUAR
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM
SELANGOR DARUL EHSAN
MALAYSIA

ACKNOWLEGEMENTS

I would like to thank Prof. Madya Dr. Chan Sei; the supervisor of this project, for his encouragement and support throughout this project. His valuable guidance is much appreciated.

I would like to express my gratitude and appreciate the help of En. Bakri, Dr. Maliki and En. Ishak for shared an idea for the project. In addition, thanks to my beloved parent for guidance and love nurturing me to be who I am today.

Last but not least, I would like to thank all my friends who had given their ideas, support and encouragement throughout the study. THANK YOU

ABSTRACT

Protecting solid-state electronic equipment from AC power line disturbances is a growing concern. Computers are subjected to data errors, crashing, and are sometimes damaged or destroyed by voltage transients as a result of an absence or misapplication of protective devices. Due to the important role that voltage regulators play in the electric power systems stability and the present limited information about models and parameters representative of their dynamic behaviour, it has become necessary to study, analyze and establish a basic methodology to test these regulators in order to obtain the performance and effectiveness of voltage regulator. This project concerns on test of voltage regulation limit, the time response, the operating voltage, corresponding between input and output, and the regulated operation. The effectiveness and performance of voltage regulator system is studied and analyzed.

TABLE OF CONTENTS

CHAPTER		D)	DESCRIPTION		
1	INTE				
	1.1	Backg	round	1	
	1.2	Scope	of the project	1	
	1.3	Organ	ization of the Thesis	2	
2	INTE	RODUC	TION TO AUTOMATIC		
	VOLTAGE REGULATOR				
	2.1	Introd	uction	3	
	2.2	Voltage regulators and line conditioner			
	2.3	Voltage Regulation			
		2.3.1	Benefits of Voltage Regulation	7	
		2.3.2	Voltage Regulator Problems	8	
	2.4	The N	eed for Voltage Regulation	10	
3	AUTOMATIC VOLTAGE				
	REGULATION TECHNOLOGIES				
	3.1	Introduction			
	3.2	Power Supply And Voltage Regulator			
		Organ	Organization		
		3.2.1	Linear regulators	15	
		3.2.2	PWM switching power supplies	15	
		3.2.3	Resonant/quasi-resonant switching		
			power supplies	15	
	3.3	Linear Regulator			
		3.3.1	Basic Linear Regulator Operation	20	

	3.4	Pulsewidth Modulated (PWM)	22			
		3.4.1 PWM Switching Operation	23			
	3.5	Quasi-resonant Switching Power Supplies	24			
4	TEST	Γ PROGRAM AND				
	EXP	ERIMENTAL PROCEDURE				
	4.1	Tests Program	26			
		4.1.1 Necessary test equipment	26			
	4.2	Field Test Classification	27			
5	RES	ULT AND DISCUSSION				
	5.1	Results	. 30			
	5.2	Reading From Digital Multimeter	30			
	5.3	Result On Overall Reading From Oscilloscope	31			
	5.4	Results On Load Regulation Test	33			
	5.5	Range Maximum and Minimum	35			
	5.6	Result on Response time	37			
	5.7	Result On Comparisons Between				
		Input And Output Voltage	39			
	5.8	Comparison Between Two				
		Models Of Voltage Regulator	. 42			
6	CON	CONCLUSION AND FUTURE DEVELOPMENT				
	6.1	Conclusions	43			
	6.2	Future Development	44			
	REF	ERENCES	45			
	A DD	ADDENDIVEC				