Design and Analysis of DNA Fragment Assembly’s
Converter and Checker Modules using De Bruijin
Graph

Mohd Shafiq B Mohd Helmi
Faculty of Electrical Engineering
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
Email: shafighelmi@aol.com

Abstract:- This paper presents the Design and Analysis of DNA
Fragment Assembly’s Converter and Checker Modules using De
Bruijin Graph. There are several objectives of this paper. The first
objective is to design and analyze edges and vertices converter.
Secondly, this paper will also discuss about designing and
analyzing common edge and branch checker. In addition, all the
modules will be integrated in one top module. Lastly, the
integrated module will be simulated in Xilinx ISE software. Based
on the objectives, this paper will discuss on constructing a DNA
Fragment Assembly module that consist of four submodules which
is Edges Converter, Vertices Converter, Common Edge Checker
and Branch Checker. The sequencing method used in this paper is
Hybridization method. Hybridization method is an option to
shotgun sequencing. Hybridization uses the array identifying
algorithm to identify the sequence. The algorithm used to
construct the module is Bruijn Graph. De Bruijn Graph
represents sequences of symbols from an alphabet, and edges that
indicate where the sequence may overlap. First, the set of DNA
will inserted in to the module, then the module will do all the
converting and checking process of the input before produce the
output of vertices and the branch of edges. All the algorithm and
theory then been simulated in Xilinx to test the functionality.

Keyword: Deoxyribonucleic Acid (DNA), Hybridization, Shotgun,
Edge, Vertices, Common Edge and Branch Edges.

I INTRODUCTION

Fragment assembly is a typical approach to sequencing long DNA
molecules to sample and then sequence fragments from them. The
objective of DNA Fragment assembly to obtain the DNA sequence
using certain hints, which are (approximate) substrings of the row [1].

What is DNA? DNA is a long polymer made from repeating
units called nucleotides [2]. From a chemical point of view DNA
consist of variable side groups of Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T) [3].

For the last two decades, DNA fragment has followed the concept
of overlap-layout-consensus [2].

7. Overlap: matching all possible find any overlapping

8. Layout: reads along DNA and putting them together

9. Consensus: deriving how sequence will appear based on
layout

There will be some problem of doing the DNA sequencing.
First, there could be multiple ways to reconstruct the original strand
out of the fragment pieces, or “snippets.” and only one of which is
correct [1-2]. In addition, the overlap stage finds pair wise similarities

65

that do not always provide true information on whether the fragments
(sequencing reads) overlap [2]. Furthermore, if a repeating sequence
is larger than the size of the viewable reads, it would make
construction of the genome almost impossible [1].

The best solution that researcher has come into is to do in graph
theory, specifically Eulerian Paths and de Bruijn Graphs, help most
of the researchers to see the possible conclusions about the problem
regarding reassembled strands of DNA.

As mentioned in abstract, de Bruijn Graph represents sequence.
Dutch mathematician Nicolaas de Bruijn found that a cyclic sequence
of letters taken from a given alphabet for every word of a certain
length (k) appears in the cyclic sequence exactly once [3].

Bruijn Graph's idea is like a stair. For an example taken from
[1], the input sequence is 0110101. The length set to be 3 (k = 3). The
first output sequence to be 011 since the length set to be 3 which are
0, 1 and 1. The next output sequence will start at the second input, so
the output sequence is 110. By looking at all the output sequence at
Figure 1, de Bruijn Graph will create outputs sequence like a stair.
Figure 2 shows the de Bruijn Graph that coincide with the sequence

[

Figure 1: The Output Stair Concept of De Bruijn Graph For A Sequence
‘0110101°

Figure 2: The De Bruijn Graph for the Sequence *0110101° With
Fragment of Length 3

The concept of Bruijn Graph also can be applied in DNA
Fragment Assembly. Take the DNA group of Adenine (A), Cytosine
(C), Guanine (G), and Thymine (T) as the input [4]. The group of
ACGT can be the input sequence of the de Bruijn Graph.

For an example taken from [5], the input sequence of the de
Bruijn Graph is ATGGAAGTCGCGGAATC. The length is set to be
7 (k = 7). The output sequence of the input refers at Figure 3.

sequence ATGGAAGTCGCGGAATC
ATGGAAG
mers T%GA:}GT B
gMmetes
AQ\G%TECGC
e,
é AATC
de Sruyn graph

[ATGGAAG |-+ TGGAAGT |-+ GGAAGTC |-+ GAAGTCG |-+{ AAGTCGC —+{ AGTCGCG j_l

GTCGCGG TCGCGGA CCCGGAA GCGGAAT CGGAATC

Figure 3: The De Bruijn Graph for the Sequence
"ATGGAAGTCGCGGAATC™ With Fragment of Length 7

Base on the concept of de Bruijn Graph, there are 11 output
sequences of the input ATGGAAGTCGCGGAATC consist of
ATGGAAG, TGGAAGT, GGAAGTC, GAAGTCG, AAGTCGC,
AGTCGCG, GTCGCGG, TCGCGGA, CGCGGAA, GCGGAAT
and CGGAATC.

The studies of de Bruijn Graph is very important because the
concept of de Bruijn Graph will be use before the sequencing part in
the DNA Fragment Assembly. During the sequencing part, the
Euler’s technique will be use to rearrange the edges and the vertices
that has been created during the converter’s and the checker’s part
based on the de Bruijn Graph [6].

Eulerian Paths is created by Leonhard Euler while solving the
famous Seven Bridges of Konigsberg problem in 1736 and the first
complete proof of this idea was published in 1873 by Carl Hierholzer
[71:

A path is said to be open if the starting vertex is different from
the ending vertex and a path is said to be closed if the starting and
ending vertices are the same vertex [8]. Both open and closed
Eulerian path has the same condition. The condition is to visits each
edge in a graph exactly once [1]. Figure 4 and Figure 5 show the
open and the closed Eulerian Path [9].

Figure 4: Open Eulerian Circuit of the input *a-b-c-d-e-f-g-c-h-f-i-j°

Figure 5: Close Eulerian Circuit of the input “a-b-c-d-e-f*

1L METHODOLOGY

DNA Fragment Assembly consists of 3 parts. The first part is the
converter, the second part is to check and the last part is to sequence
the input. The converter part consists of two modules, edges converter
and vertices converter. The second part is the checker. The checker is
including common edge checker and branch checker. The last part is
the sequencer. The sequencer will sequence all input from branch
checker and vertices converter. Refer Figure 6.

[EEs=sS e T T T = T —~
} i Common [~ Branch
es .
N || Edee Checker
Input : Converter | : Checker : v
1 ‘;mces I : i
Pl Comverer M+ —_ __ _ __ T
|
e ——— J

Figure 6: The Block Diagram of Complete DN A Fragment Assembly

This paper will only discuss on the first and the second part of
DNA Fragment Assembly that consists of Edge Converter, Vertices
Converter, Common Edge Checker and Branch Checker. Refer Figure
7.

_»| Common » Branch
Edge Checker
Checker

Figure 7: The Block Diagram of the Converter and Checker of DNA Fragment
Assembly

A set of input strand will be injected into the first block that
consists of Edge Converter and Vertices Converter. Then, the output of
edge converter, the edges, will go in to the common edge checker. In
the common edge checker module, the edges will be check side by
side for the similarity. The last module is the branch checker. What
branch checker do is to check for the branch among the edges. So the
output of this paper will be the output from the vertices converter and
the output from the branch checker. Further information will be
discussed later on this paper.

The input A, C, G and T will be transfer into binary to make the
coding easier. Each of the DNA elements will represented by 3 bits
binary as the Table 1 below,

TABLE 1. BINARY REPRESENTATIVE OF THE DNA
STRAND
DNA Element | 3 Bits Binary
A 000
C 001
G 010
T 011

The four modules of DNA Fragment Assembly for this paper
clearly will do different task in order to complete the system
requirement.

There are some limitations in this project design. The first
limitation is the maximum number of strands that can be accepted by
the module is 5. For an example, it’s only accepting input strands such
as AACTG. Furthermore, the branch checker will only check for the
existence of branch but it not put the branch in the place it’s should be
which is between the edge. Next, the paper will discuss a little more
about the modules exist in the Converter and Checker of DNA
Fragment Assembly.

66

A. Edge Converter

Edge Converter is the first module that the input will go through. The
input from the DNA is a very long sequence. Before further steps, the
5 inputs first been converted in to binary. For an example if the input
sequence (strand) is S = {A, T, A, T, G}, then the binary input will be,

A - 000
T-011
A - 000
T-011
G- 010

So, the full sequence is S =000011000011010.

Edge Converter will convert the input S into several edges base
on Bruijn Graph. The length of the edges has been set to be 2 (k = 2).
What the statement means that, the stair (refer to the stair concept in
the introduction) will stop after 2 inputs have been met. Refer Figure

8.
e OaOa0a0n0

Figure 8: The Set of Edges for the Input of "ATCGAT"

For the input strand, S = {A, T, A, T, G}, the edges are AT, TA,
AT and TG based on the de Bruijn Graph algorithm with the length of
2. Refer Figure 9. The figure shows that how de Bruijn Graph with the
lengths of 2 works. Every 2 inputs, it will produce one output then
change to the next input to convert the second output.

2 4
——
et e’
1 3
Figure 9: The Edges Converter Concept Base On De Bruijn Graph

The Edge Converter will convert whatever input, S, inserted in to
the system. From 5 inputs strands, it will detect and covert all of edges
available. For example we did before, the Edge Converter will convert
into 4 edges, E3, E2, E1 and EO then convert it into binary numbers as
Table 2 below.

TABLE 2. BINARY EDGES

Output Edge | Binary Edge
E3 AT 000011
E2 TA 011000
El AT 000011
EO TG 011010

B. Vertices Converter

Vertices are the DNA element that connects the two edges. Same as
Edge Converter, Vertices Converter will convert input strand (S) into
several vertices in term of binary number. The edges will have the
length of 2 snippets while the vertices will have the length of 3
snippets.

edge edge

4 J i

vertex vertex

Figure 10: Example of Vertices of the Input Sequence *ATCG’

Figure 10 shows that an example of the vertices. The figure
shows that the vertices are the combination of 2 edges. The edges are
AT, TC and CG. From the edges AT and TC, the vertex is ATC since
it is the combination from the two edges. It is the same thing happen at
the edges TC and CG.

From the previous example on the Edge Converter, S = {A, T, A,
T, G!, the vertices will be as Table 3.

TABLE 3. BINARY VERTICES
Output | Edge | Vertex Binary
Vertices
E3 AT
V2 ATA | 000011000
E2 TA
Vi TAT | 011000011
El AT
N ATG | 000011010
EO TG

The same concept applied to the vertices converter. Same as edge
converter, de Bruijn Graph also applied to this module. The only
different to the edge converter is that, it has the length of 3 but the
edge converter only has the length of 2.

C. Common Edge Checker

Common Edge Checker is the module that will check the same edges
side by side. It means that, it will check between E3 and E2, E2 and El
and lastly E1 and EO. If there is the similarity of the side edge, one of
the edges will be eliminate and go into the common edge output, CE.

CE
E3 E2

Figure 11: Common Edge

From Figure 11, E3 and E2 from Edges Converter output,
are comparing each other to see whether they are the same or not. If
they are the same, E2 will go into CE2. Figure 12 shows flowchart of
this module.

/ CE2:E3
CEleEL

CE2<E3

o e)
i (B - S
~.
ves §)
CileEl

et '[.,/l i

Figure 12: Flowchart of A Common Edge
67

D. Branch Checker

The last module of the DNA Fragment Assembly is the Branch
Checker. Branch Checker get the input from the output of Common
Edge Checker which is CE2, CEl, CEO and E0O. What branch checker
do is that it will detect the branch in the input strand.

What is branch? Branch is the edge between the two same
edges.

Figure 13: Branch

Branch Checker will compare two edges. It’s different from
Common Edge Checker because it will compare two edges that is not
side by side to it. Figure 13 shows that, edge E3 will compare to edge
El. If E3 and El are the same, edge that is in between E3 and EI,
which is E2. will become the branch. Figure 14 shows the flowchart of
branch checker.

START 3
(\T/
\ ~.

Yes

2 e NG

CE1=E0_1

B2=CE1
B1=CEO

)v! END\
N

Figure 14: Flowchart of A Branch Checker

11 RESULTS AND DISCUSSION

All the modules have successfully integrated and simulated using
Verilog coding in Xilinx ISE Design Suite [10-14]. All of the modules
behave as it should. Figure 15 shows the RTL Schematic of DNA
Fragment Assembly.

S —
EdgeCom Commédge BranchCheck]
‘...+_,v4._——-_..~_,__) r—
| P e e s e s S
i
|| =L 3
— o —
| i S o —— gl
| & 4
|| [#3 8C
|
|
VeaConv
H‘
— —
i
‘ vC
\
DNAFragh_top

Figure 15: RTL Schematic of DNA Fragment Assembly

Before the test has been done to the overall module (complete
Converter and Checker for DNA Fragment Assembly), the test had
been done to the submodule in it. The first test has been done to the
Edge Converter. Figure 16 shows the Technology Schematic of the
Edge Converter. Edges Converter will get the input with 5 strands
which is 15 bits (3 bits per strand). The input named as S. The output
of the Edges Converter is E3, E2, E1 and EO.

Figure 16: Technology Schematic of the Edges Converter

To test the functionality of the module, several sets of 15 bits
inputs has been entered into the test fixture of Xilinx ISE. Below is the
figure of one set of input that has been entered into the module which
is S = 000011000011001. Base on this input, we can that, the DNA
elements that has been entered are ATATC.

From the theory of an Edge Converter at the methodology part,
Edges Converter will convert the input into parts with the length of 2
based on de Bruijn Graph. From the input ATATC above, what we
should get in the Edges Converter are AT, TA, AT and TC. Table 4
shows the result that should been get by the simulations and Figure 20
shows the result of the input and the output of the Edge Converter of
the simulation.

TABLE 4. BINARY EDGES OF THE INPUT ATATC

Output Edge | Binary Edge
E3 AT 000011
E2 TA 011000
El AT 000011
EO TE 011001

The functionality of the Edges Converter has been proved
because the theoretical values have the same value with the simulation
values.

Next, the input strands S, will go through the Vertices Converter.
Figure 17 shows the Technology Schematic of the Vertices Converter.
Vertices Converter will get the input with 5 strands which are 15 bits
(3 bits per strand). The input named as S. The output of the Vertices
Converter is V2, V1 and V0. Vertices Converter will convert the input
into parts with the length of 3 based on de Bruijn Graph. From the
input ATATC above, what we should get in the Vertices Converter are
ATA, TAT and ATC.

Table 5 shows the result that should been get by the simulations
and Figure 20 shows the result of the input and the output of the
Vertices Converter of the simulation.

68

= o

|
|
i
|
|
|
|
|
|
l

i
|
2

Figure 17: Technology Schematic of a Vertices Converter

TABLE 6. BINARY COMMON EDGES OF THE INPUT "ATATC"
QOutput Edge Binary Edge
CE2 AT 000011
CE1 TA 011000
CEQ AT 000011
EO 1 TC 011000

The output of Common Edges Checker then will undergo the
Branch Checker’s module. The module will check for the branch. As
has been explain before at the methodology part, branch is the edge
between the two same edges. The input of the Branch Checker will be
CE2, CE1, CEO and E0_1 as there are from the output of Common
Edges Checker and the output is Bl and BO. Figure 19 shows the
technology schematic of a Common Edges Checker.

The input of the Branch checker are AT, TA, AT and TC. Since
the first edge, AT, is the same with the third edge, AT, so TA (that
exist in the middle between the two AT) will be the branch.

Table 7 shows the result that should been get by the simulations
and Figure 20 shows the result of the input and the output of the
Branch Checker of the simulation.

TABLE 5. BINARY VERTICES OF THE INPUT "ATATC"
Qutput | Vertex Binary Vertices
V2 ATA 000011000
Vi TAT 011000011
V0 ATC 000011001

The output of Edges Converter then will undergo the checker
module consist of Common Edges Checker and Branch Checker. The
output of Edges Converter first will go to Common Edges Checker.
Figure 18 shows the technology schematic of a Common Edges
Checker.

Common Edges Checker will check for the same edges side by
side with the other edge. For an example there are two edges AA and
AA side by side. Common Edge Checker will detect the second edge
and delete in from the module.

The input of Common Edge Checker is E3, E2, E1 and EO from
the output of the Edges Converter. The outputs of this module are
CE2, CE1, CE0 and EO_1. Since the edges from the Edges Converter
are AT, TA, AT and TC, there is no common edge since AT is not the
same as TA, TA is not the same as AT and AT is not the same as TC.
So. the result of the common edges is the same as the result from the
Edges Converter since there is no edge has been eliminate. Table 6
shows the result that should been get by the simulations and Figure 20
shows the result of the input and the output of the Common Edges

of

ikl

i
i

514

=0
S

Figure 19: Technology Schematic of a Branch Checker

TABLE 7. BINARY REPRESENTATIVE OF BRANCH OF THE INPUT

Checker by the simulation.

=
b

b

‘ATATC’
Qutput Edge Binary Edge
B2 TA 011000
Bl 0 0

-

-

Figure 18: Technology Schematic of a Common Edge Checker

Figure 21 shows the result of the input and the output of the
whole Converter and Checker of DNA Fragment Assembly of the
simulation.

IV. CONCLUSIONS

From the theoretical and simulation results, it was found that the
checkers and the converters of DNA Fragment Assembly that have
been designed and analyzed are working correctly. Edges and Vertices
converter have been converted the 15 bits input strands to small
segment with the length of 2 for the edges and length of 3 for the
vertices. The Common Edges Checker and also Branch checker have
been checked for any common edge existence and the branch
existence. The entire modules have been integrated in one big module
called DNA Fragment Assembly. All of the modules have
successfully been simulated in verilog coding using Xilinx ISE
software.

69

V. RECOMMENDATIONS FOR FUTURE WORK

De Bruijn Graph is highly recommended in the DNA Fragment
Assembly since it has precise in cutting the long strands in to small
segment. It is also easy to understand. For the further analysis to
improve the design, it is recommended to use a longer input strands as
the input because the real DNA has a very long sequence to be tested.
Furthermore, it is also recommended that to combine both Common
Edge Checker and Branch Checker in to one module to reduce the size
of the design.

VL ACKNOWLEDGMENT

I am thankful to my supervisors, Puan Tuan Norjihan Tuan
Yaakub and Encik Abdul Karimi Halim, whose encouragement,
guidance and support from the initial to the final level enabled me to
develop an understanding and achieving the goal of this project. Next
to my friends, Aqilah Razali and Fadzilatul Husna whose have help me
in understanding and completing the project. Lastly, I offer my regards
and blessings to my parents and all of those who have supported me in
any respect during the completion of this project.

VIL REFERENCES
(1] J. Kaptcianos. Graph Theory Aiding DNA Fragment Assembly,

St. Michael's College Colchester. Vermont, USA Volume 7.

September 19 2008.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, & P.

Walter, Molecular Biology of the Cell, 4th edition, New Y ork:

Garland Science; 2002.

R sne0)

(b)

(3] P. A.Pevzner, H. Tang & M. S. Waterman. A New Approach to
Fragment Assembly in DNA Sequencing, Los Angeles, CA,
USA, 2001.

[4] C.Sugnet, DNA: Structure and Function, Internet:
http://users.soe.ucsc.edu/~sugnet/documentation/biology start
er/DNA.html, University Of California Santa Cruz.

(5] Homologus Frontier, De Bruijn Graphs, Internet:

http://www.homolog.us/blogs/2011/07/28/de-bruijn-graphs-i/,
July 28th, 2011.

(6] H. Fleischner, Eulerian Graphs and Related Topics, Elsevier
Science, London, 1990.

[71 L.B.H. Victor, Eulerian Path And Circuit, January 24, 2010.

[8] P.E.C.Compeau, P. A. Pevzner & G. Tesler, How To Apply De
Bruijn Graphs To Genome Assembly, Nature Biotechnology 29,
987-991 (2011)

[9] N.L.Biggs. E. K. Lloyd and R. J. Wilson, Graph Theory,
Clarendon Press, Oxford, 1976.

[10] F. Vahid (University of California, Riverside) & Roman Lysecky
(University of Arizona), Verilog for Digital Design, Wiley
Bicentennial, 2007.

[11] T. R. Padamanabhan & B. B. T. Sundari, Digital Through
Verilog HDL, Wiley Interscience, 2003.

(12] D. E. Thomas & P. R Moorby, The Verilog Hardware
Description Language, Kluwer Academic, 1998.

[13] S. Golson, Carlisle MA, State Machine Design Techniques For
Verilog and VHDL, Carlisle MA, USA, 1994.

[14] D. M. Harris & S. Harris, Digital Design & Computer
Architecture, Morgan Kaufmann, Mar 2, 2007.

g e0_1(5:0
Ry £3(5:0)
mg e2(5:.0)
Ry E1[5:0)
| eo[s:0]

BJ €0_1(5:0

(d)

Figure 20: The Simulations Results Of The Modules Of The Checker And The Converters Of DNA Fragment Assembly With The Input of
*ATATC: (a) The Result of the Edges Converter. (b) The Result of the Vertices Converter.
(¢) The Result of the Common Edges Checker. (d) The Result of the Branch Checker.

Figure 21: The Result of the Input and the Output of the Whole Converter and Checker of DNA Fragment Assembly

70

