# SHORT TERM ELECTRICITY LOAD FORECASTING USING ARTIFICIAL NEURAL NETWORK (ANN)

by

## MUHAMMAD ZAKWAN MOHD ZUKI

Report submitted in partial fulfillment of the requirement for the degree of Bachelor Engineering



UNIVERSITI TEKNOLOGI MARA

**JULY 2014** 

#### ACKNOWLEDGEMENT

Thank you to ALLAH almighty for his blessings for giving me a still functioning body and mind in order to live, life and learn, and particularly to work on my final year project and with Allah permission and divine guidance, I have completed this thesis successfully.

A lot of thank to my supervisor, Dr. Zuhaila Mat Yasin, for her guidance and contribution along the progression period during completing this final year project. This gives me chance to explore a new knowledge as well as for giving me advices in order to improve myself to becoming a good engineer and better person.

Deepest thanks and appreciation to my parents, family and others for their cooperation, encouragement, constructive suggestion and full of support upon completing the project, from beginning till the end. Also thanks to all of our friends, that has been contributed by supporting my project and helps me during the assignment progress till it is fully completed.

Besides, we would like to thank the authority of UiTM for providing me with a good environment and facilities to complete this report.

#### ABSTRACT

This paper has presents a study of electricity load forecasting demand by using artificial neural network (ANN). Generally, there are three levels of processing forecasting data using artificial neural network (ANN) which are input layer, hidden layer and output layer. This method was developed using MATLAB software which produced the accurate result of this load forecasting. Mean Absolute Percentage Error (MAPE) was applied to show the differences between predicted value and actual load data. The study forecasts the amount of consumed in the next 24-hours. Table of historical hourly loads of DUKE, USA from 26<sup>th</sup> March 2012 until 4<sup>th</sup> July 2012 was used in this paper. Forecasting load demand is very important for the operation of generating electricity supply companies because it helps to make decisions to generate enough power electric to consumer as well as to control operation of electric usage of the company's infrastructure.

Keywords-component; load Forecasting; Artificial Neural Network (ANN); Electric Power; MAPE;

### **TABLE OF CONTENTS**

| ACKI | NOWLEDGEMENTi                     |
|------|-----------------------------------|
| ABST | RACTii                            |
| LIST | OF FIGURES v                      |
| LIST | OF TABLES                         |
| LIST | OF ABBREVIATIONS vii              |
| CHAI | PTER 1: INTRODUCTION1             |
| 1.1  | Background of Study1              |
| 1.2  | Problem Statement                 |
| 1.3  | Objectives                        |
| 1.4  | Scope of Work                     |
| 1.5  | Thesis Overview                   |
| CHAI | PTER 2: LITERATURE REVIEW         |
| 2.1  | Introduction                      |
|      | 2.1.1 Purpose of load forecasting |
| 2.2  | Power System Load                 |
| 2.3  | Supplies                          |
| 2.4  | Loads                             |
| 2.5  | Load Residential Power Systems    |
| 2.6  | Load Commercial Power Systems     |
| 2.7  | Load Management                   |
| 2.8  | Previous methods                  |
|      | 2.8.1 Regression                  |
|      | 2.8.2 Time Series                 |
|      | 2.8.3 Expert System               |
|      | 2.8.4 Fuzzy Logic                 |

|      | 2.8.5 Support Vector Machine          | 16 |
|------|---------------------------------------|----|
| CHAP | TER 3: METHODOLOGY                    | 17 |
| 3.1  | Introduction                          | 17 |
| 3.2  | Artificial Neural Network             | 17 |
|      | 3.2.1 Network Architecture            | 18 |
|      | 3.2.2 Training                        |    |
|      | 3.2.3 Testing                         | 21 |
| 3.3  | Data Analysis                         | 21 |
|      | 3.3.1 Data Pre-processing and Scaling |    |
| 3.4  | Post-Processing                       |    |
| 3.5  | Error Analysis                        | 23 |
| CHAP | TER 4: RESULTS AND DISCUSSION         |    |
| 4.1  | Introduction                          | 27 |
| 4.2  | ANN Result Analysis                   |    |
| CHAP | TER 5: CONCLUSION AND RECOMMENDATION  | 32 |
| 5.1  | Conclusion                            |    |
| 5.2  | Recommendation                        |    |
| REFE | RENCES                                |    |

APPENDIX A: HISTORICAL HOURLY LOAD DATA OF DUKE

#### APPENDIX B: MATLAB PROGRAMMING

#### APPENDIX C: TECHNICAL PAPER