POWER FACTOR CORRECTION USING BOOST CONVERTER TECHNIQUE

Thesis is present in partial fulfilment for the award of Bachelor of Engineering (Hons) Electrical University Technology Mara

ACKNOWLEDGEMENT

I would like to express my sincere thank you to my supervisor PM Pauziah bt Mohd Arsad, department of Electrical Engineering, UiTM Shah Alam for providing me the necessary guidance to carry out this project. I would like to take this opportunity to thank her for her constant support and guidance me throughout my work.

Besides, I also would like to express sincere thanks to my parents for the continuous support to me. Then thanks to all my friends who have help me through the completion of this project.

Last but not least special of thanks dedicated to all members from Faculty of Electrical Engineering batch 2010/2013 and all lecturers who have involved directly or indirectly upon completion of this project. Thank you and May Allah bless you.

ABSTRACT

This project describes a single phase rectifier with improved power factor by using the boost converter technique. Low Power Factor (PF) is caused by nonlinearity of the input current. An active power factor correction method was designed for improvement of the power factor. Boost converter is one method of re-shaping the input waveform to be same pattern with the sinusoidal input voltage. The boost converter acts as a Power Factor Correction (PFC) of the input circuit. The design was developed and tested by using PowerSim (PSIM) simulation software. The PF and THD were measured and analyzed for three different situation namely without PFC, with passive PFC and active PFC. Significant percentage of reduction for the THD and percentage of improvement for power factor is achieved by active PFC.

TABLE OF CONTENTS

CONTENT

PAGE

1

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xviii

1 INTRODUCTION

1.1	General Introduction	1
1.2	Project Background	2
1.3	Problem Statement	4
1.4	Objectives	4
1.5	Project Scope	5
1.6	Thesis Outline	5

2

3

4

LITERATURE REVIEW

LITE	RATURE REVIEW	6	
2.1	Power Quality	6	
	2.1.1 Types of Power Quality Disturbance	7	
2.2	Power Factor	13	
2.3	Power Factor Correction		
	2.3.1 Types of Power Factor Correction (PFC)) 17	
	2.3.2 Passive Power Factor Correction	17	
	2.3.3 Active Power Factor Correction	18	
2.4	Boost Converter	21	

MET	HODO	LOGY	24	
3.1	Power	rsim (PSIM) Software	24	
3.2	Flow	Flow Chart		
3.3	Mode	Model Design		
	3.3.1	Without Power Factor Correction	30	
	3.3.2	With Passive Power Factor Correction	30	
	3.3.3	With Active Power Factor Correction	31	
	3.3.3	Principle Operation of Boost Converter	32	
	3.3.4	Setting Simulation Parameter	32	
RES	ULT AP	ND DISCUSSION	35	
A 1	With	aut Downer Footon Composition	25	

4.1	without rower ractor confection	55
4.2	With Passive Power Factor Correction	37
4.3	With Active Power Factor Correction	39

5	CONCLUSION AND RECOMMENDATIONS		44
	5.1	Conclusion	44
	5.2	Recommendations	45
			16

REFERENCES	46

APPENDICES	49
------------	----