APPLICATION OF ARTIFICIAL IMMUNE SYSTEM FOR SOLVING LOAD FLOW PROBLEM

Project report is presented in partial fulfilment for the award of the Bachelor of Electrical Engineering (Hons)

Niz Izuwan Bin Sanip 2003464056 B. ENG (Hons.) ELECTRICAL Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA (UiTM) Shah Alam, Selangor Darul Ehsan

ACKNOWLEDGEMENT

All praise is to Allah S.W.T, The Most Gracious and Most Merciful who has given the author the strength, ability and patient to complete this project.

The author wishes to express his deepest gratitude and appreciation to Assoc. Prof. Dr. Titik Khawa Abd Rahman, author's industrial project supervisor for her invaluable suggestion, guidance and encouragement for the completion of this project.

A special thank you is extended to all author's colleagues, for the valuable help and motivation given to complete this project. Finally, the author's deepest appreciation go to beloved family, especially author's father and mother who are dearest person in author's life and greatest source of inspiration, thank you for the endless love and encouragement they have given.

ABSTRACT

The load-flow problem is the calculation of the real and reactive powers flowing in each line and the magnitude and phase angle of the voltage at each bus. This project report presents an Artificial Immune System based on optimization approach for solving the load-flow problem in a power system. Artificial Immune System is a computational or search method based upon metaphors of the biological immune system, while load- flow studies are the backbone of power system analysis and design. The simulation results reveal that the developed algorithm could provide an alternative to solve the load- flow problem. A comparative studies was done between result obtain from Artificial Immune System load- flow technique and the Newton Raphson load -flow technique. It is tested and illustrated by applying the method to the IEEE 6-bus test system

TABLE OF CONTENT

CHAPTER		PAGE
1.	INTRODUCTION	1
	1.1 Background Study	1
	1.2 Objective of the Project	2
	1.3 Scope of Work	2
	1.4 Project Report Organisation	2
2.	THEORETICAL DISCUSSION	. 3
	2.1 Load Flow	3
	2.1.1 Load-Flow Problem	3
	2.2 Solutions to load Flow Problem	7
	2.2.1 Newton Raphson Method	9
	2.2.2 Artificial Immune System	19
	2.2.2.1 Clonal Selection Algorithm	22
	2.2.2 Implementation of Clonal Selection For Load-Flow Problem	
	2.3 C Programming	30

3.	METHODOLOGY	31
	3.1 Introduction	31
	3.2 Programming Technique	34
	3.3 Test System	34
4.	RESULT AND DISCUSSION	35
	4.1 Introduction	35
	4.2 Results from High Load Condition	36
	4.3 Results from Low Load Condition	37
	4.4 Results from Change in Load at Bus 5	38
5.	CONCLUSION AND RECOMMENDATION FOR FUTURE WORK	40
	5.0 Conclusion	40
	5.1 Recommendation for Future Work	41
Reference		42
Appendix	•••••	43
	A- AIS load- flow C programming source code	43
	B- Results from the low voltage i.e. high load condition	68
	C- Results from the high voltage i.e. low load condition	71
	D- Results from variation of load at bus 5	74