STUDY ON SINGLE PHASE INDUCTION MOTOR CONDITIONS USING VOLTAGE LEVEL METHOD

Project report presented in the partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA

MOHD SAFUAN BIN ALI ASPAR Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENTS

In the name of Allah, the Beneficent, the Merciful. All praise is to Allah who has given me the strength and ability to complete this project and the thesis as it is today. All perfect praises belong to Allah SWT, Lord of the universe. May His blessings upon the Prophet Muhammad SAW, members of his family and companions.

I want to take this opportunity to express my appreciation to my supervisor, Saiful Firdaus Abd. Shukor for his thought and patience in helping me by providing a lot of information and advice in order to complete this project.

Then, I wish to thank to all of my friends especially to final year degree students in electrical engineering for their suggestions and support on this project. Their comments on this project are greatly appreciated.

Most importantly I would like to extend my appreciation to my parents for their support and patience during my pursuit for higher studies. They have encouraged me throughout my education, and I will always be grateful for their sacrifice, generosity and love.

Mohd Safuan bin Ali Aspar Faculty of Electrical Engineering Universiti Teknologi Mara (UiTM) Shah Alam,Selangor Darul Ehsan

ABSTRACT

The aim of the study was to analyze the performance of single phase induction motor (SPIM) by varying the duty cycle of buck chopper. The thesis also aims to study the behavior of SPIM characteristics under variable motor conditions. The chopper also has been used to control the voltage input for the single phase isolated gate bipolar transistor (IGBT) bridge inverter. The inverter used pulse-width modulation (PWM) technique to supply the motor. The work was conducted by using a digital computer simulation (MATLAB software).

CHAPTER	DESCRIPTION	PAGE
	Declaration	i
	Acknowledgements	ii
	Abstract	iii
	Table of contents	iv
	List of figures	vi
	List of tables	viii
	Abbreviations	ix
1.	INTRODUCTION	
	1.1 Overview of Study	1
	1.2 Objective of Study	3
	1.3 Scope of Study	3
	1.3 Thesis Organization	4
2.	LITERATURE REVIEW	
	2.1 Single Phase Induction Motor	5
	2.2 Speed Control of SPIM	9
	2.3 Rectification	11
	2.4 DC-DC Converter	14
	2.5 Pulse-Width Modulation	17
	2.6 AC Inverter	18
	2.7 MATLAB Software	21
3.	METHODOLOGY	
	3.1 Uncontrolled Rectifier	23
	3.2 DC Chopper	24
	3.3 Pulse-Width Modulation (PWM) Technique	26
	3.4 AC Inverter	26
	3.5 MATLAB Simulation Circuit	27

TABLE OF CONTENTS

4.	RESULTS AND DISCUSSION	
	4.1 Calculation of Single Phase Induction Motor	34
	4.2 Output Rectifier and Dc Chopper	37
	4.3 Variable Voltage Level Method	40
	4.4 Variable Motor Conditions	42
5.	CONCLUSION	44
6.	RECOMMENDATIONS OF FUTURE WORK	45
	REFERENCES	46

APPENDICES

States and the second

.