DETERMINATION AND ANALYSIS OF HARMONIC CONTENTS IN A THREE-PHASE INSTALLATION

SUMAIYAH BINTI MOHAMAD SANI

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITY TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

In the name of Allah Most Beneficent Most Merciful. All praises being to Allah, Lord of the Universe, with also bless and regard to Nabi Muhammad S.A.W, His Companion and the people who follow His path.

I gratefully acknowledge the co-operation of PM Muhammad Bin Yahya who has assisted the various tests, references, guidance, encouragement and support in completing this project. All the regular discussion sessions that we had throughout the period of study have contributed to the completion of this project.

I also gratefully acknowledge the co-operation and discussion with my friend assisting with new idea in developing my project.

I also would like to thank my family especially my parents and siblings for their moral and material support.

ABSTRACT

Harmonics generation can lead to serious power quality problem if it is not reduced to acceptable level. Electric components content of non-linear loads contribute to serious harmonics injection to the main supply line. This project is proposed to analyse a harmonic distortion that produced by non-linear loads.

This project summarizes a study of harmonic distortion for non-linear devices. The study of analysis held on Power System Laboratory at Level 6, UiTM Shah Alam. Large number of computers and fluorescent lamps were involved.

The main objective and focus for this project is to measure total harmonic distortion of equipments. Therefore, in the purpose to find harmonic components, Psim Version 6 and Fluke RPM were used. The circuit diagram for the fluorescent lamp and computer were design and simulate in the Psim. From the Psim, the values of harmonic distortion at odd harmonic integers obtained. After that the Total Harmonic Distortion (THD) is calculated by using the formula. By using Fluke RPM, the changes in harmonic distortion and their values of harmonic integer can tracked easily.

TABLE OF CONTENTS

PAGE

4

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	
LIST OF ABBREVIATIONS	

CHAPTER DESCRIPTION

1 1	Scope of The Thesis	
1.1	Scope of the thesis	

2 LITERATURE REVIEW

2.1	Introduction		
2.2	Sources of Harmonic		
	2.2.1	Linear Load	7
	2.2.2	Non-linear Load	10
	2.2.3	Equipment That Produce Harmonic	14
2.3	Harmo	onic In Power System	17
	2.3.1	How Harmonic Are Producing	17
	2.3.2	Harmonic Distortion	18
		2.3.2.1 Why Are Voltage And Current	
		Harmonic A Problem	18
		2.3.2.2 Ignoring Third-harmonic	19
	2.3.3	Waveform Distortion	21
		2.3.3.1 Voltage Waveform Distortion	21
2.4	Effect	s Of Harmonic In Electrical System	22
	2.4.1	Thermal Losses In A Harmonic	23
	2.4.2	Harmonic Effects On Power System	
		Equipments	24
		2.4.2.1 Capacitor Banks	24
		2.4.2.2 Rotating Machines	25
	2.4.3	Protection, Communication and	
		Electronic Equipments	25
	2.4.4	Effects Of Current Distortion	26
	2.4.5	Effects Of Voltage Distortion	27
	2.4.6	Effects Of Voltage Distortion	27
2.5	Harmo	onic Fundamental	28
	2.5.1	Total Harmonic Distortion Equation	28
2.6	Harmo	onic Current Distortion Limit	29

3 METHODOLOGY

5 METHOD	JLUGI	
Psim Description		31
Fluke RPM Description		31
3.2.1	Experiment Overview	32

4 **RESULT AND DISCUSSION**

4.1	Introduction		34
4.2	The Si	imulation By Using Psim	34
	4.2.1	Fluorescent Lamps	35
		4.2.1.1 The Result Of A Set Of	
		Fluorescent Lamp	36
		4.2.1.2 Power System Laboratory Lamps	
		Installation	38
	4.2.2	Computers	40
		4.2.2.1 The Result For A Computer	40
		4.2.2.2 The Result For 36 Computers	42
	4.2.3	The Result For The Whole Lab	44
4.3	The M	leasurement Of Harmonics	47
	4.3.1	Fluorescent Lamp Harmonic Measurement	47
	4.3.2	Computer Harmonic Measurement	51
	4.3.3	Power System Laboratory Harmonic	
		Measurement	55
4.4	Comp	arison	59

5 DESCRIPTION

5.1	Conclusions	
5.2	2 Future Development	
	5.2.1 Types Of Filters	63
	5.2.1.1 Series Tuned Filters	63
	5.2.1.2 Double Band-Pass Filters	63
	5.2.1.3 Passive Filters	63
	5.2.1.4 Active Filters	64

REFERENCES

66