UNIVERSITI TEKNOLOGI MARA

DETECTION OF LIPASE GENE OF LOCAL SOIL BACTERIA ISOLATED FROM DOMESTIC WASTE SITES

FARHANA BINTI MOHAMAD IZAM SUHAIMI

Dissertation submitted in partial fulfillment of the requirements for the degree of **Master of Science (Applied Biology)**

Faculty of Applied Science

July 2018

ABSTRACT

Lipases are important enzymes and known as most powerful biocatalyst in biotechnology industries. The aim of this study was to determine the lipase production from local soil isolates of domestic waste sites by using qualitative and quantitative methods, to identify the bacterial isolates that produced lipase via molecular methods and to detect the lipase gene segment from the chosen isolate with the highest lipase production. Six isolated lipase producing bacteria were selected and screened for their lipase activity. All isolates were isolated from two local domestic waste site soils at Shah Alam, Selangor namely garbage site and night market site. The four isolates from garbage site soil were labelled as F5, F5s, F5s-2 and F2, while the other two isolates from night market site soil were labelled as N4 and N8. All of them gave positive results when tested on the Rhodamine B agar plate by emitting the fluorescent orange colour that indicates the secretion of lipase. Among these isolates, N4 shows the most intense colour which indicates that there were higher lipase secretions from this isolate compared with other isolates. The result was supported by quantitative spectrophotometric assay that showed isolate N4 releasing the highest lipase activity among the others with value of 1,543.78 U/ml. After performing 16S rRNA gene amplification, two isolates out of six isolated bacteria were selected for further sequencing and were identified as Serratia marcescens and Alcaligenes faecalis for isolate N4 and isolate F5s-2 respectively. A pair of lipase gene primers of LipA gene was designed based on Serratia marcescens strain and the gene was successfully detected in the genomic DNA of isolate N4.

ACKNOWLEDGEMENT

Firstly, I thank Allah for giving me the opportunity to embark on my Master and for completing this journey successfully. My gratitude and thanks go to my supervisor, Assoc. Prof. Dr. Farida Zuraina Mohd. Yusof, and my co-supervisor, Dr. Wan Razarinah Wan Abd Razak. Thank you for the support, patience and ideas in assisting me with this project. I also would like to express my gratitude to the lecturers of UiTM Shah Alam, especially to Madam Rafidah Rasol for the knowledge and her assistance in order to complete all my work.

My appreciation goes to the laboratory assistants, Mr. Zamri, Mr. Johari, Mr. Farid, Mr. Amri and Mr. Afnan who provided the assistance during my laboratory works. Special thanks to my colleagues and friends for helping me with this project.

Finally, this dissertation is dedicated to my father, Mohamad Izam Suhaimi bin Haji Rashid and my mother, for the vision and determination to educate me. This piece of work is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	1
1.3 Significance of Study	2
1.4 Objectives of Study	2
1.5 Scope and Limitation	2
CHAPTER TWO: LITERATURE REVIEW	3
2.1 Lipase	3
2.1.1 Lipase Catalysis	3
2.1.2 Sources of Lipase	5
2.1.3 Lipase Substrate	6
2.1.4 Bacterial Lipases Group	8
2.1.5 Bacterial Lipases Properties	9
2.1.6 Screening of Bacterial Lipases	10
2.2 Microbial Lipase Habitat	12
2.2.1 Oil-contaminated Sites	12
2.2.2 Industrial Sites	12
2.2.3 Marine Sites	14

2.2.3 Marine Sites

2.3	Lipase-Producing Bacterium	15
	2.3.1 Mesophilic Bacterium	15
	2.3.2 Thermophilic Bacterium	15
	2.3.3 Psychrotrophic Bacterium	16
	2.3.4 Local Lipase Isolates	16
2.4	Recombinant Lipase	17
	2.4.1 Recombinant Microbial Lipases	17
	2.4.2 Advantages of Recombinant Lipases	18
2.5	Application of Lipase	19
	2.5.1 Fat and Oil Industry	20
	2.5.2 Detergent Industry	21
	2.5.3 Dairy Industry	21
	2.5.4 Oleochemicals and Fine Chemicals Industry	21
	2.5.5 Cosmetics and Perfume Industry	22
	2.5.6 Pesticides Industry	22
	2.5.7 Environmental Management Industry	23
	2.5.8 Medical Industry	24
СН	APTER THREE: RESEARCH METHODOLOGY	25
3.1	Collection of Soil Samples	25
3.2	Isolation of Lipolytic Bacteria	25
	3.2.1 Preparation of Enrichment Medium	25
	3.2.2 Preparation of Cycloheximide	25
	3.2.3 Preparation of Rhodamine B Stock Solution	26
	3.2.4 Preparation of Rhodamine B Indicator Plate	26
	3.2.5 Isolation of Bacteria	27
	3.2.6 Preparation of Glycerol Stock Solution	27
3.3	Qualitative Assay	28
	3.3.1 Preparation of Rhodamine B Stock Solution	28
	3.3.2 Preparation of Rhodamine B Indicator Plate	28
	3.3.3 Lipase Assay plate Test	28
3.4	Quantitative Assay	29
	3.4.1 Preparation of Standard Curve	29
	3.4.2 Spectrophotometric Method	29