UNIVERSITI TEKNOLOGI MARA

FABRICATION OF CROSS-LINKED CHITOSAN/NANO TiO₂ HYBRID COMPOSITE FOR REACTIVE RED 120 DYE REMOVAL FROM AQUEOUS SOLUTION

NUR SHAZWANI ABDUL MUBARAK

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

May 2017

ABSTRACT

In this study, cross-linked chitosan-epichlorohydrin/nano TiO₂ (CE/TiO₂) and crosslinked chitosan-glutaraldehyde/nano TiO₂ (CG/TiO₂) beads namely CE, CE/TiO₂-25, CE/TiO₂-50, CG, CG/TiO₂-25, CG/TiO₂-50 were prepared for the removal of reactive red 120 dye. Compared with the unmodified cross-linked chitosan-epichlorohydrin beads (CE) and cross-linked chitosan-glutaraldehyde beads (CG), the nano-hybrid composite beads were proved to have better sorption capacity of reactive red 120 dye (RR120), especially CE/TiO₂-50 and CG/TiO₂-25. For comparison purpose, the adsorption of RR120 by using pristine nano TiO₂ was performed as well. The composites were characterized using infrared spectroscopy, solubility test, swelling index, pH point of zero charge (pH_{PZC}), pH-potentiometric titration, CHN analysis, scanning electron microscope (SEM) analysis, and X-ray diffraction (XRD) analysis. The adsorption behavior of the unmodified cross-linked chitosan derivatives and their composites beads was compared for RR 120 uptake. Batch mode experiments were conducted as a function of the adsorbent dosage (0.02-1.40 g), pH (3-12), initial dye concentration (30-400 mg/L) and temperature (303-323K). Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The Langmuir gives the best fit based on the experimental data for all adsorbents. The maximum adsorption capacities of CE, CE/TiO₂-25 and CE/TiO₂-50 beads were 81.30, 135.14 and 208.33 mg/g respectively at 303 K. On the other hand, the maximum adsorption capacities of CG, CG/TiO₂-25 and CG/TiO₂-50 beads were 15.67, 44.05, 13.66 mg/g respectively at 303 K. Adsorption kinetics data were also investigated using pseudo-first order and pseudo-second order kinetics. For all unmodified and composite beads, pseudo-second order kinetics was found to describe the adsorption process better than pseudo-first order kinetics. Thermodynamic parameters such as Gibbs free energy (ΔG°), standard enthalpy (ΔH°) standard entropy (ΔS°) were evaluated by applying the Van't Hoff equation. The thermodynamics of RR120 dye adsorption onto CE, CE/TiO₂-25 and CE/TiO₂-50 beads was spontaneous and endothermic, whereas for CG, CG/TiO₂-25 and CG/TiO₂-50 beads were non-spontaneous and endothermic in nature. The chitosan/TiO₂ ratio appeared to have a significant effect on adsorption of RR120 on composite derivatives. Consequently, the adsorption capacities of CE/TiO₂-50 and CG/TiO₂-25 composite beads becomes approximately more than twice as high as their unmodified CE and CG beads, respectively, as well as pristine TiO₂ powder. The obtained results revealed the higher potential of cross-linked chitosan/TiO₂ composite beads for RR120 removal compared with unmodified cross-linked beads.

ACKNOWLEDGEMENT

In the Name of God, Most Gracious, Most Merciful.

First and foremost, I would to express my utmost gratitude to my supervisor Dr. Ali H. Jawad Al-Taie for his continuous support of my thesis. Without his patience, motivation, enthusiasm, and immense knowledge I would not be able to complete my thesis. His guidance helped me throughout the entire time of the research and writing of this thesis. I could not have imagined having a better advisor and mentor for my research studies.

I also would like thank my co supervisor, Dr. Wan Izhan Nawawi Bin Wan Ismail for his endless support.

Besides my advisors, I would like to thank my lab mates for helping and guiding me throughout the process by giving ideas and knowledge that they know about research. They were there when I needed them the most especially in writing this thesis. I also would like to thank the entire lab assistant in UiTM Perlis who has offered their unconditional help throughout the research of this study.

Special thanks to my parents and my sisters for their unconditional support, both financially and emotionally throughout my master's degree. This thesis is heartily dedicated to my mother who has continuously advises and prayed for me throughout the time of my research. She also kept on encouraging me not to give up and strive for what I want in life.

Last but not least, I would like to acknowledge MyBrain15 for sponsoring and funding my tuition fees.

I am indebted to every person involved in my research work and I appreciate to those who have contibuted to make this research work successful. Only Almighty will bless and reward your kindness. Thank you very much.

TABLE OF CONTENTS

		Page		
CONFIRMATION BY PANEL OF EXAMINERS				
AUTHOR'S DECLARATION				
ABSTRACT				
AC	KNOWLEDGEMENT	v		
TAI	BLE OF CONTENTS	vi		
LIS	T OF TABLES	ix		
LIS	T OF FIGURES	x		
LIST OF SYMBOLS				
LIS	xix			
CH	1			
1.1	Background of Study	1		
1.2	Problem Statement	4		
1.3	Significance of Study	5		
1.4	Objective of Study	6		
1.5	Scope and Limitation of Study	6		
CHA	APTER TWO : LITERATURE REVIEW	7		
2.1	Dye as Water Pollutant	7		
2.2	Reactive Red 120 (RR120)	8		
2.3	Wastewater Treatment Methods	9		
2.4	Adsorption			
2.5	Chitosan			
2.6	Modification of Chitosan (CS)	13		
	2.6.1 Physical Modification of CS	14		
	2.6.2 Chemical Modification of CS	14		
2.7	Chitosan Composites	16		
2.8	Titanium Dioxide, TiO ₂			

2.9	Chitosan/TiO ₂ Composites		
2.10	Adsorption Study		22
	2.10.1	Effect of Adsorbent Dosage	22
	2.10.2	Effect of pH	23
	2.10.3	Effect of Initial Dye Concentration	23
	2.10.4	Effect of Temperature	24
СНА	PTER '	THREE : METHODOLOGY	25
3.1	Raw M	laterials and Chemicals	25
3.2	Prepara	ation of Stock Solution Reactive Red (RR120) Dye	25
3.3	Preparation of Adsorbents		
	3.3.1	Preparation of Cross-Linked Chitosan Beads	26
		3.3.1.1. Preparation of Cross-Linked Chitosan Epichlorohydrin	26
		(CE)	
		3.3.1.2 Preparation of Cross-linked Chitosan Glutaraldehyde (CG)	26
	3.3.2	Preparation of Cross-Linked Chitosan/Nano TiO ₂ Composite	27
		Beads	
3.4	Characterizations		27
	3.4.1	Solubility and Swelling Test	27
	3.4.2	Point of Zero Charge (pH _{pzc})	28
	3.4.3	Potentiometric Titration	28
	3.4.4	Elemental Analysis (CHN)	29
	3.4.5	Fourier Transform Infrared Spectroscopy (FTIR)	29
	3.4.6	Scanning Electron Microscopy (SEM)	29
	3.4.7	X-Ray Diffraction (XRD)	30
3.5	Batch Adsorption Experiments		30
	3.5.1	Effect of Adsorbent Dosage	31
	3.5.2	Effect of pH	31
	3.5.3	Effect of Initial Dye Concentration	31
	3.5.4	Effect of Temperature	31
3.6	Isotherm Studies		32
3.7	Kinetic Studies		32