UNIVERSITI TEKNOLOGI MARA

ENHANCEMENT OF WEAR PROPERTIES 316L STAINLESS STEEL THROUGH SHOT BLASTING TREATMENT AND PASTE BORONIZING PROCESS

MUHAMAD HAFIZUDDIN BIN MOHAMAD BASIR

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Mechanical Engineering

June 2017

ABSTRACT

Stainless steel is used widespread in various industries but it has poor wear resistance. This research was conducted to enhance wear resistance of 316L stainless steel by applying shot blasting and paste boronizing at ideal parameters. Three phases were involved in this study in which each of the phases contributes to each of the research objectives which consist of selection of ideal parameters for shot blasting, selection of ideal parameters for paste boronizing and wear resistance characterization. Data were collected and analyzed which concentrating on the samples' microstructure, X-ray Diffraction (XRD), microhardness, wear evaluation, surface roughness and density. Shot blasting improves the case depth of boride layers formed after performing paste boronizing by boosting the boron diffusion owing to the grain refinement created by shot blasting. Ideal shot blasting and paste boronizing parameters produce the greatest case depth of boride layers with highest surface hardness on 316L stainless steel which leads on improving its wear resistance. Shot blasting smoothen the metal's surface and both of the studied surface treatments slightly reduce its density. This research contributes in identifying the ideal shot blasting and paste boronizing parameters in enhancing wear resistance of 316L stainless steel. In this investigation, the ideal shot blasting parameters were obtained using 250 micron of glass beads and 6 bar of blasting pressure while the ideal paste boronizing parameters were achieved at temperature of 950°C and 8 hours of soaking time. These parameters can be used in fabricating the improved 316L stainless steel for industrial usages.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful.

First and foremost, all praises to Allah S.W.T as with His guidance and blessings, I managed to complete my MSc research successfully. Sholawat and salam also to our beloved prophet Muhammad S.A.W.

In this opportunity, I would like to express my gratitude to my main supervisor, Ir. Dr. Bulan Binti Abdullah and also to my co-supervisor, Dr. Muhammad Hussain Bin Ismail for sharing knowledge and time throughout the whole research process.

Besides, I would like to acknowledge Universiti Teknologi MARA and the Ministry of Higher Education for supplying the financial and facilities provision which really contribute in the research activities. Sincere thanks also to the technicians and colleagues that involved in providing the technical support and cooperation.

Last but not least, I would also like to give a high token of appreciation to my parents and siblings for the financial and valuable moral supports throughout the research period. May Allah reward all of them with peace, mercy and blessings.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF PLATES	xvi
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xix

CH	APTER ONE: INTRODUCTION	1			
1.1	Research Background	1			
1.2	Problem Statement	3			
1.3	Research Objective	5			
1.4	Research Scope	5			
1.5	Research Significance	6			
1.6	Thesis Outline	7			
CH	APTER TWO: LITERATURE REVIEW	8			
2.1	Introduction				
2.2	Stainless Steel	8			
	2.2.1 316/316l Stainless Steel	10			
2.3	Iron Carbon Phase Diagram				
2.4	Wear	12			
	2.4.1 Abrasive Wear	12			
	2.4.2 Adhesive Wear	13			
	2.4.3 Erosive Wear	14			

	2.4.4	Corrosiv	ve Wear	15		
	2.4.5	Fatigue	Wear	16		
	2.4.6	Fretting	Wear	16		
	2.4.7	Wear Re	esistance Enhancement	17		
	2.4.8	Wear Re	esistance Measurement	17		
2.5	Diffus	sion Mech	Iechanism			
2.6	Surface Treatment			19		
	2.6.1	Surface	Severe Plastic Deformation Technique (SPD)	19		
	2.6.2	Boronizi	ing Process (A Case Hardening)	25		
	2.6.3	Combina	ation of Both Surface Treatments	35		
CHA	APTER	THREE	: RESEARCH METHODOLOGY	44		
3.1	Introd	uction		44		
3.2	Resear	rch Phase		44		
3.3	Research Flow Chart			45		
	3.3.1	Phase 1:	Selection of Ideal Parameters for Shot Blasting	46		
	3.3.2	Phase 2:	Selection of Ideal Parameters for Paste Boronizing	46		
	3.3.3	Phase 3:	Wear Resistance Characterization	47		
3.4	Experimental Process And Equipment			48		
	3.4.1	Sample Preparation				
		3.4.1.1	Sample Labeling	48		
		3.4.1.2	Sample Cutting and Deburring	49		
		3.4.1.3	Cleaning Process	50		
		3.4.1.4	Mounting Process	51		
		3.4.1.5	Grinding Process	51		
		3.4.1.6	Polishing Process	52		
		3.4.1.7	Etching Process	53		
	3.4.2	Surface 7	Freatment	54		
		3.4.2.1	Shot Blasting Process	54		
		3.4.2.2	Paste Boronizing Process	55		
	3.4.3 Experimental Test					
		3.4.3.1	Spectrometer Test (Metal's Chemical Composition)	57		
		3.4.3.2	Microstructure Observation (Optical Microscope)	58		
		3.4.3.3	Microstructure Observation (Scanning Electron	58		