UNIVERSITI TEKNOLOGI MARA

MECHANICAL AND THERMAL PROPERTIES OF RUBBER TOUGHENED POLYESTER FILLED CARBON BLACK (CB) AND KENAF HYBRID COMPOSITE

AEIN AFINA BINTI MOHD REDZUAN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

May 2017

ABSTRACT

This study was conducted to investigate the mechanical and thermal properties which are flexural strength, flexural modulus, impact strength, fracture toughness, storage modulus, tan delta, curing behaviour, decomposition temperature, glass transition temperature, followed by chemical interaction and morphological properties of rubber toughened composites. Neat polyester, rubber toughened polyester (RP), rubber toughened polyester composite filled carbon black (RPCB), rubber toughened polyester filled CB and treated kenaf (RPCBTK) and rubber toughened polyester filled CB and untreated kenaf (RPCBUK) hybrid composite were produced. Carbon black (CB) nanopowder and kenaf fibres were dried and sieved. A part of kenaf fibres was treated by using 6 wt. % of sodium hydroxide (NaOH). CB filler was varied from 2, 4, 6, 8 and 10 wt. %. Treated and untreated kenaf fibres were varied from 5, 10, 15, 20 and 25 wt. %. 3 wt. % of liquid natural rubber (LNR) was added as the toughening agent. RPCB composites were prepared using open mould technique. Kenaf hybrid composites were prepared by using hot compression method.4 wt. % of CB filler was chosen as the overall optimal filler percentage and combined with each percentage of treated and untreated kenaf fibre to produce rubber toughened polyester hybrid composites. The composite properties were investigated by using flexural, impact, fracture toughness, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX) and transmission electron microscopy (TEM) testing. For RPCB composites, neat polyester gave the maximum value for flexural strength (56.13 MPa). 4 wt. % of RPCB composite gave the maximum value of 5.51 GPa for flexural modulus and 7.05 kJ/m² for impact strength.For RPCBTK and RPCBUK hybrid composites, neat polyester gave maximum flexural strength value. 25 wt. % of RPCBTK gave maximum flexural modulus of 6.31 GPa. RPCB composite gave the maximum impact strength while RP composites gave maximum fracture toughness value of 1.87 MN/m^{3/2}. 25 wt. % of RPCBUK and 25 wt. % of RPCBTK were chosen as the overall optimal percentage of hybrid composites. 25 wt. % of RPCBTK gave optimal maximum value of 53.73 MPa for flexural strength, 3.57 kJ/m² for impact strength and 1.20 MN/m^{3/2} for fracture toughness. 25 wt. % of RPCBUK gave optimal maximum value of 37.44 MPa for flexural strength, 5.83 GPa for flexural modulus, 3.41 kJ/m² for impact strength and 1.71 MN/m^{3/2} for fracture toughness. 25 wt. % RPCBUK gave maximum storage modulus value of 42.86 GPa. 25 wt. % RPCBTK gave the maximum glass transition temperature of 116.067 C° and lowest tan delta intensity of 0.24. TGA thermograms showed good decomposition behaviour of the composites. DSC thermograms showed composites were fully cured. FTIR spectra indicated the removal of hydroxyl groups by NaOH in the treated hybrid composite. FESEM micrograph showed good interfacial bonding between rubber, CB particles, kenaf fibre and polyester matrix. Changes in weight percentage of elements from EDX analysis indicated presence of rubber, CB particles and kenaf fibre in the matrix. TEM micrograph of RPCB composite showed the presence of 3 to 8 nm sized of CB particles in the composite.

ACKNOWLEDGEMENT

First of all, praise and full of thankfulness to Allah S.W.T, for his blessings, and for giving me strength, patience, and health, so that I was able to finish this study. Thus, upon completion of this study, I would like to express my gratitude towards many responsible persons.

In the steps through finishing this study, my heartfelt thanks goes to my supervisor, Dr. Noor Najmi Binti Bonnia for her patience, continuous support, guidance, advice and shared experiences. Not to mention, my cosupervisor, Dr. Siti Norhasmah Binti Surip for her cooperation and support.

I am, of course, indebted to my lovely parents, Mohd Redzuan Bin Wan Nek and , siblings, Mimi Idzuni, Ben Heykal and Emi Afizan for their unconditional love, sacrifice, understanding, compassion, help and support throughout the journey upon completing this study. Special thanks to my dear friends, Zafirah Usaili, Azlini Aziz, Nurul Humairah Azhar, Faiqah Abdul Halim, Farah Dina Abdullah, Nurul Shakirah Shuhaimen, Fatin Fakhira Malek, Nurhazwani Latif, Alya Abdullah, and many others, who had always been there, through thick and thin, tears and laughter, ill and healthy.

In addition, I would like to thank the lecturers, researchers, lab staffs, friends and acquaintances for their help in providing material, guidance and ideas in order for me to complete the project successfully. I would also like to thank all others who have in one way or another, gave me valuable help, assistance and advice. Only Allah S.W.T. able to repay all that all of you had given me.

From the bottom of my heart, sincerely, thank you.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii.
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Significance of Study	4
1.4 Objective of Study	5
1.5 Scope and Limitation of Study	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Composite	7
2.1.1 Matrix	8
2.1.2 Reinforcement	8
2.2 Polymer	10
2.2.1 Thermoset	12
2.3 Polyester	13
2.3.1 Properties of Polyester	14
2.3.2 Crosslinking in Polyester	16
2.4 Rubber Toughened Thermoset	18
2.4.1 Natural Rubber (NR)	20

24

	2.4.3 LNR Toughened Composite	25
2.5	Nanofiller	28
	2.5.1 Nanocomposite	29
2.6	Carbon Black (CB)	32
	2.6.1 Structure of CB	33
	2.6.2 Carbon Black (CB) Composite	36
2.7	Natural Fibre	38
	2.7.1 Natural Plant Fibre Microstructure	42
	2.7.2 Chemical Structure of Cellulose	43
	2.7.3 Natural Fibre Composite	44
2.8	Kenaf Fibre	46
	2.8.1 Kenaf Fibre Composite	48
2.9	Fibre Treatment	49
	2.9.1 Chemical Treatment	50
	2.9.2 Mechanical Properties of Treated Fibre Composite	52
2.1	0 Hybrid Composite	55
СН	IAPTER THREE: RESEARCH METHODOLOGY	59
3.1	Materials and Instrument	59
	3.1.1 List of Materials	59
	3.1.2 List of Apparatus and Instruments	59
3.2	Sample Preparation	60
	3.2.1 Preparation of Kenaf Fibre	60
	3.2.2 Preparation of Polyester	61
	3.2.3 Preparation of Rubber Toughened Polyester	61
	3.2.4 Preparation of Rubber Toughened Polyester Filled Carbon Black	62
	(CB) Composite	
	3.2.5 Preparation of Rubber Toughened Polyester Filled CB and Kenaf	62
	Hybrid Composite	
	3.2.6 Preparation and Dimensioning of Composite Boards	63
3.3	Sample Characterisations	64
	3.3.1 Flexural Testing	64
	3.3.2 Impact Testing	64