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ABSTRACT 

This work consists of studying the workability of C45 steel in face milling by 

using coated carbides (GC4040). The objective is to investigate the evolution 

of surface roughness (Ra, Ry, and Rz) and Material Removal Rate (MRR) 

according to cutting speed, feed rate, and depth of cut. A full-factorial design 

(43) was adopted in order to analyse the obtained experimental results via both

Analysis of Variance (ANOVA) and Response Surface Methodology (RSM)

design. The levels of cutting speed were as follows: Vc1=57 m/min; Vc2=111

m/min; Vc3=222 m/min and Vc4=440 m/min. The ranges of feed rate were

fz1=0.024 mm/tooth; fz2=0.048 mm/tooth; fz3=0.096 mm/tooth and fz4=0.192

mm/tooth. As for the depth of cut levels, they included ap1=0.2 mm; ap2=0.4

mm; ap3=0.6 mm, and ap4=0.8 mm. To determine mathematical models to

make predictions, a statistical analysis of the results by using RSM was applied

to obtain the main effects and interactions plot of the answer. Furthermore, a

multi-objective optimization procedure for minimizing Ra and maximizing the

metal removed rate using the desirability approach was also implemented.

Therefore, the developed models can be effectively used to predict the surface

roughness criteria and the material removal rate in machining C45 steel. The

results indicated that feed rate is a significant factor affecting surface

roughness (Ra: 52.37%, Ry: 80.97%, and Rz: 54.96%), followed by cutting

speed (Ra: 37.88%, Ry: 12.90%, and Rz: 24.43%). Meanwhile, cutting speed
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and feed rate are the most significant parameters on the MRR with a 

contribution of 29.5% followed by the depth of cut with 11.62%. 

 

Keywords: Milling; C45; Modelling; Optimization; Roughness; ANOVA 

 

 

Introduction 
 

The manufacturing process, in particular machining, plays an important role in 

determining the levels of integrity on the surfaces to be produced. In 

manufacturing industries, different machining processes are used to remove 

material from the workpiece, and milling is one of the most widely used 

processes due to its ability to remove material quickly with a surface roughness 

quality [1]-[2]. In the machining process, modelling, and optimization [3]-[4] 

are important tasks, allowing the choice of the most convenient cutting 

conditions in order to obtain desired values in a certain variable, which usually 

has a direct economic impact such as the machine time or the total cost of 

operation. The response surface methodology is a general approach to 

obtaining the maximum value of a dependent (response) variable that depends 

on several independent (explanatory) variables. This technique combines the 

Design of Experiments (DOE) and multiple regressions. 

Modelling is applied to look at the form of influence like linear, 

quadratic, or cubic and what mathematical equation it governs, with a given 

precision, the variation of the phenomenon according to the influential factors. 

The modelling of response is done by choosing experimental points whose 

number is at least equal to the sum of the effects, interactions, and quadratic 

effects. Thus, a matrix of n rows and k columns is defined. Rizvi and Ali [5] 

presented mathematical modelling and optimization of surface roughness (Ra) 

and Material Removal Rate (MRR) during the machining of AISI 1040 steel 

in which response optimization that represents the optimal combination of 

cutting process parameters are observed to be cutting speed of 400 rpm, feed 

rate of 0.3 mm/rev, and cutting depth of 2.1 mm. Cutting speed is the most 

significant parameter that affects Ra, Rz, and MRR. Good agreement was 

observed by Ghosh et al. [6] between the experimental with predicted Ra value 

for the RSM-PSO technique during modelling and the optimization of cutting 

parameters for keyway milling operation of C40 steel under wet conditions. 

To study the influences of cutting parameters on the surface roughness 

criteria during face milling AISI 1045 steel, Trung et al. [7] suggested two 

models of surface roughness prediction, one of which is built on the basis of 

Johnson transformation and the other is developed according to Response 

Surface Method (RSM). Palanisamy et al. [8] optimized cutting parameters 

(Vc, fz, and ap) and modelled results such as MMR, surface roughness, cutting 

force, and tool tip temperature using Taguchi-based Gray's Relational Analysis 

(GRA) and RSM, respectively when machining Incoloy 800H. Surface 



Optimization and mathematical modelling of surface roughness criteria  
 

 

175 

roughness and MRR are important parameters in the machining process. 

Bouzid et al. [9] proposed modelling technique of the surface roughness and 

optimization of cutting parameters to determine the optimal cutting regime by 

minimizing roughness and maximizing MRR during the machining of AISI 

1040 steel. Concerning the machinability of AISI 5140 steel, Kuntoğlu et al. 

[10] carried out a study to determine the optimal cutting conditions, analysis 

of vibrations, and surface roughness under different cutting parameters. Using 

the neural network method, Sureshkumar et al. [11] investigated the influence 

of cutting parameters (vc, fz, and ap) on surface roughness in milling operation. 

Modelling and optimization play important roles in choosing the optimum 

cutting regimes during machining to achieve the desired results [12]. 

To minimize the surface roughness and maximize the MRR when 

turning X20Cr13 stainless steel, Bouzid et al. [13] concluded that the optimal 

values should include a feed rate of 0.08 mm/rev, depth of cut of 0.15 mm and 

cutting speed of 120 m/min. The experimental study of Pandiyan et al. [14] 

involved machining AA6351 alloy steel by a CNC machining centre which 

was evaluated according to RSM with an objective function and optimization 

methods to find the values of process variables that produce desirable values 

of the response where mathematical models are developed from the responses 

obtained and validated. Ozdemir [15] studied the effect of cutting parameters 

on the machinability of X37CrMoV5-1 hot work tool steel. He found that the 

feed rate was 95.90% effective on the Ra value, whereas the cutting speed and 

the cutting depth factors were not effective. The Ra value increased as the feed 

rate increased. Factors and ratios affecting the MRR value were determined as 

61.70% for feed rate, 27.42% for cutting depth, and 5.04% for cutting speed, 

respectively.  

This paper presents the effect of the cutting regime (Vc, fz, and ap) on 

surface roughness criteria (Ra, Ry, and Rz) and MRR in face milling of C45 

steel using coated carbide (GC4040) inserts. 

 

 

Materials and Methods 
 

All the tools used to conduct the experiments are presented which consist of a 

presentation of various equipment that are used to monitor the evolution of the 

surface roughness during face milling. In addition, the different methods used 

for planning and the conditions for carrying out the experiments are cited. The 

experiments necessary for this study were carried out at the Laboratory of 

Mechanics and Structure (LMS), Department of Mechanical Engineering, 

University of May 8, 1945 - Guelma. 

 

Machine tools, cutting tools, and tool holder 

The machine tool used for these tests included a vertical milling machine from 

the National Society for the Production of Industrial Machine Tools (PMO), 
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model ALMO with a power of 5 KW (Figure 1) on C45 grade steel specimens 

machined (65 x 65 x 250 mm) (Figure 2) with three (Z=3) GC4040 coated 

carbide inserts (Figure 3) fixed on a 100 mm diameter milling cutter (Figure 

4), where Z is the number of insets. 

Spindle rotational speeds available on the milling machine (N; rev/min) 

are 45; 63; 90; 125; 180; 250; 355; 500; 710; 1000, 1400; 2000. The different 

feed rates of this machine are in (Vf; mm/min): 10; 16; 20, 25; 31.5, 50; 63; 80; 

100; 125; 160; 200; 250; 314; 400; 500; 630; 800, with fz calculated using the 

following Equation (1). 

 

𝑓𝑧 =
𝑉𝑓

𝑁 ∗ 𝑍
 (1) 

 

where Z: number of inserts (Z=3 inserts). 

In order to reduce uncertainties due to resumption operations, the 

roughness was directly measured on the workpiece without dismounting from 

the lathe using a 2D roughness meter Sj- 201p (Mitutoyo) which was selected 

to measure surface roughness criteria (Figure 5) in the machining direction. 

The measurements were repeated three times on the surface at three references. 

 

 

 
 

Figure 1: Machine Tools 

(PMO), model ALMO 

 

Figure 2: Specimens machined (65 x 65 x 

250 mm) 
 

Due to the medium-high carbon content, C45 steel can be welded with 

some precautions, and it has a low hardenability in water or oil. It is fit for 

surface hardening gives this steel grade a high hardness of the hardened shell 

and its chemical composition is shown in Table 1. Concerning the 

measurement of the roughness, a roughness meter Sj-201p was used. 
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Figure 3: Insert 

GC4040 

 

Figure 4: Coromill 

245 milling cutter 

 

Figure 5: Roughness meter 

Sj-201p and roughness 

measurement method 

 

Table 1: Chemical composition % of C45 steel 

 

Cr + Mo + Ni = max 0.63 

C Si Mn Ni P S Cr Mo 
0.43 - 0.5 max 

0.4 

0.5 - 0.8 max 

0.4 

max 

0.045 

max 

0.045 

max 

0.4 

max 

0.1  

Planning of experiments 
To calculate the constants and coefficients of the mathematical models, 

Minitab and Design-Expert (both software) were used and characterized by 

Analysis of Variance (ANOVA), multiple regressions, and the RSM. In the 

current study, the relation between the cutting conditions and the technological 

parameters is given in Equation (2). 

 

𝑌 = 𝜙(𝑉𝑐. 𝑓𝑧. 𝑎𝑝) (2) 

 

where Vc: cutting speed, fz: feed rate, ap: depth of cut. 

φ is the response function and the approximation of Y is proposed by 

using a non-linear (quadratic) mathematical model which is suitable for 

studying the interaction effects of process parameters on machinability 

characteristics. In the present work, the RSM-based second order mathematical 

model is given by Equation (3). 

 

𝑌 = 𝑏𝑜 + ∑ 𝑏𝑖

𝑘

𝑖=1

𝑋𝑖 + ∑ 𝑏𝑖𝑗

𝑘

𝑖𝑗

𝑋𝑖𝑋𝑗 + ∑ 𝑏𝑖𝑖

𝑘

𝑖=1

𝑋𝑖
2 + 𝜀𝑖𝑗  

(𝜀𝑖𝑗 = 𝑦𝑖𝑗 − 𝑦
𝑖𝑗

) 

 

(3) 
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where b0 is the free term of the regression equation, the coefficients b1, b2, ..., 

bk and b11, b22, bkk are the linear and the quadratic terms, respectively, while 

b12, b13, bk-1 are the interacting terms. Xi represents the input parameters (Vc, f, 

and, ap) and ԑij is the error of fit for the regression model. Output surface 

roughness and MRR are also called response factors. 

Multi-factorial method 3 factors and 4 levels (Table 2) were chosen. 

Cutting parameters were selected based on the chemical composition, tool 

manufacturer guidelines, and cutting hardness of the workpiece material. Full-

factorial design (43=64 runs) was selected for the design of experiments and 

the experimental results are given in Table 3. 

Multiple response optimization is a procedure that enables the 

determination of the independent cutting speed parameters (Vc, f, and fz) that 

lead to optimal response results. The desirability function (DF) is expressed as 

Equation (4).  

 

𝐷𝑓 = (𝛱. 𝑑𝑖
𝑤𝑖

𝑖=1
𝑛

) 

𝐹(𝑥) = −𝐷𝑓 

(4) 

 

where:  

Df: desirability function,  

di: specific desirability of each of the (n) target outputs. It is expressed as a 

function of the target for each target output. 

Wi: the corresponding weighting function. 

The MRR in milling operations is the volume of material that is 

removed per unit time in mm3/min. The study of this parameter is important 

since the goal is to manufacture low-cost and high-quality products in a short 

time. The value of MRR is calculated using the following Equation (5). 

 

𝑀𝑅𝑅 = 𝑎𝑝 × 𝑎𝑒 × 𝑓𝑧 × 𝑍 ×
𝑉𝑐 × 1000

𝜋 × 𝐷
 (5) 

 

where; ae (cutting width)=73.5 mm, Z=3 tooths, D=100 mm (milling cutter). 

 

Table 2: Factors and levels used in the experiments (multi-factorial method) 
 

Factors Symbol 
Levels 

Level 1 Level 2 Level 3 Level 4 

Cutting speed (m/min) Vc 57 111 222 440 
Feed rate (mm/ tooth) fz 0.024 0.048 0.096 0.192 

Depth of cut (mm) ap 0.2 0.4 0.6 0.8 
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Results and Discussion 

 

Statistical data treatments were carried out in two steps. In the first one, the 

ANOVA and the effect of each factor and its interactions were determined. To 

achieve this goal, the response surface plots were generated considering two 

parameters at a time while the third one was kept constant. The second step 

focused on the modelling aspects using RSM outputs. 

 

Table 3: Experimental data for C45 steel 
 

Runs 

Factors Responses 

Vc; 

m/min 

fz; 

mm/tooth 

ap; 

mm 

Ra; 

µm 

Ry; 

µm 

Rz; 

µm 

MRR; 

mm3/min 

1 57 0.024 0.2 4.071 7.928 5.85 192.13 
2 57 0.024 0.4 4.155 8.224 6.12 384.26 

3 57 0.024 0.6 4.218 7.788 5.99 576.39 

4 57 0.024 0.8 4.26 9.132 6.295 768.52 
5 57 0.048 0.2 5.265 9.592 7.705 384.26 

6 57 0.048 0.4 5.312 9.8 7.705 768.52 
7 57 0.048 0.6 5.417 9.46 7.295 1152.78 

8 57 0.048 0.8 5.68 9.216 7.09 1537.04 
9 57 0.096 0.2 6.163 10.116 8.845 768.52 

10 57 0.096 0.4 6.394 11.244 9.51 1537.04 

11 57 0.096 0.6 6.541 9.252 9.795 2305.56 
12 57 0.096 0.8 6.583 10.144 10.08 3074.08 

13 57 0.192 0.2 7.234 11.956 9.03 1537.04 
14 57 0.192 0.4 7.318 11.728 10.31 3074.08 

15 57 0.192 0.6 7.465 12.18 9.075 4611.12 

16 57 0.192 0.8 7.381 11.376 10.69 6148.16 
17 111 0.024 0.2 3.365 6.864 4.895 374.15 

18 111 0.024 0.4 3.365 5.64 5.205 748.3 
19 111 0.024 0.6 3.386 5.736 5.01 1122.44 

20 111 0.024 0.8 3.659 6 4.8 1496.59 
21 111 0.048 0.2 3.785 7.152 5.225 748.3 

22 111 0.048 0.4 3.848 7.248 5.32 1496.59 

23 111 0.048 0.6 4.29 7.44 5.035 2244.89 
24 111 0.048 0.8 4.079 6.588 4.655 2993.19 

25 111 0.096 0.2 5.31 7.956 5.415 1496.59 
26 111 0.096 0.4 5.415 7.968 5.605 2993.19 

27 111 0.096 0.6 5.436 8.004 5.89 4489.78 

28 111 0.096 0.8 5.562 8.976 6.175 5986.37 
29 111 0.192 0.2 6.528 10.86 7.79 2993.19 

30 111 0.192 0.4 6.612 11.076 7.98 5986.37 
31 111 0.192 0.6 6.843 12.84 8.835 8979.56 
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32 111 0.192 0.8 6.885 12.756 9.025 11972.74 

33 222 0.024 0.2 2.653 5.2 4.04 748.3 
34 222 0.024 0.4 2.821 5.128 4.035 1496.59 

35 222 0.024 0.6 3.184 4.84 4.32 2244.89 

36 222 0.024 0.8 3.389 5.28 4.7 2993.19 
37 222 0.048 0.2 4.31 7.224 5.32 1496.59 

38 222 0.048 0.4 4.31 7.968 5.415 2993.19 
39 222 0.048 0.6 4.31 8.34 5.7 4489.78 

40 222 0.048 0.8 4.394 7.008 4.985 5986.37 

41 222 0.096 0.2 5.478 10.656 6.555 2993.19 
42 222 0.096 0.4 5.415 8.004 5.7 5986.37 

43 222 0.096 0.6 5.562 8.868 6.175 8979.56 
44 222 0.096 0.8 5.457 8.232 5.985 11972.74 

45 222 0.192 0.2 6.99 12.48 8.455 5986.37 
46 222 0.192 0.4 6.032 11.784 8.455 11972.74 

47 222 0.192 0.6 6.053 12.984 9.12 17959.1 

48 222 0.192 0.8 6.948 11.4 8.265 23945.4 
49 440 0.024 0.2 1.092 4.716 2.945 1483.11 

50 440 0.024 0.4 1.113 4.932 3.04 2966.22 
51 440 0.024 0.6 1.197 5.808 3.23 4449.33 

52 440 0.024 0.8 1.218 5.688 3.325 5932.44 

53 440 0.048 0.2 2.596 4.28 3.515 2966.22 
54 440 0.048 0.4 2.575 3.836 3.515 5932.44 

55 440 0.048 0.6 2.68 4.312 3.99 8898.66 
56 440 0.048 0.8 3.159 5.412 3.8 11864.8 

57 440 0.096 0.2 3.352 7.98 6.08 5932.44 

58 440 0.096 0.4 3.394 7.968 5.7 11864.8 
59 440 0.096 0.6 3.373 8.436 5.795 17797.3 

60 440 0.096 0.8 3.394 8.172 5.795 23729.7 
61 440 0.192 0.2 4.549 10.656 7.505 11864.8 

62 440 0.192 0.4 4.57 10.404 7.695 23729.7 
63 440 0.192 0.6 4.612 10.992 7.885 35594.6 

64 440 0.192 0.8 4.612 10.608 5.89 47459.5 

 
Modelling using RSM technique 
 
ANOVA analysis 
ANOVA is useful for understanding the influence of given input parameters 

from a series of experimental results by the method of designing experiments 

for machining processes, and it also helps to provide an interpretation [16]. 

Essentially, it partitions the total variation in an experiment into components 

attributable to the factors controlled and the errors generated. The statistical 

significance of the fitted quadratic models is assessed by p-values and F-values 

from the ANOVA. 
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In ANOVA Tables 4, 5, and 6, the p-value is the probability (ranging 

from 0 to 1). If the p-value is greater than 0.05, the parameter is insignificant; 

if the p-value is less than 0.05, the parameter is significant. The squared sum 

(SS) is used to estimate the square of the deviation from the general mean 

(Equation 6). 
 

𝑆𝑆𝑓 =
𝑁

𝑁𝑛𝑓

∑(𝑦
𝑖

𝑁𝑛𝑓

𝑖=1

− 𝑦)2 (6) 

 

where: 

𝑦: the average response, 

𝑦
𝑖
: average of the measured responses for each level i of the F-factor, 

N: the total number of trials, 

Nnf: the number of levels of each f factor. 

The squared mean (MS) is calculated by dividing the squared sum by 

the number of degrees of freedom (Equation 7). 
 

𝑀𝑆𝑖 =
𝑆𝑆𝑖

𝑑𝑙𝑖

 (7) 

 

The F-Value is used to check the compatibility of the mathematical 

model on the grounds that the calculated F-Values must be greater than the 

tabulated F (F-Table) (Equation 8). 
 

𝐹𝑖 =
𝑀𝑆𝑖

𝑀𝑆𝑒

 (8) 

 

where MSe is the mean squared sum of the errors. 

Column (Cont%) of the ANOVA table shows the contribution of 

factors (in percent) to the total variance, indicating the degree of percent effect 

on response (Equation 9). 
 

𝐶𝑜𝑛𝑡. % =
𝑆𝑆𝑓

𝑆𝑆𝑇

× 100 (9) 

 

The coefficient of determination (R2), defined as the ratio of explained 

variation to total variation, is a measure of the goodness of fit (Equation 10). 
 

𝑅² =
∑(𝑦𝑖 − 𝑦)²

∑(𝑦
𝑖

− 𝑦)²
 (10) 

 

ANOVA results for response surface criteria (Ra, Ry, and Rz) 
To determine the influence of any given input parameter from a series of 

experimental results by DOE for the machining process, the statistical method 
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of ANOVA was used to properly interpret the experimental data [4]. The 

coefficient of determination R2 is an important criterion that is defined as the 

ratio of the explained variation to the total variation and is a measure of the 

degree of adjustment. R2 (adj) is an average measure explained by the model, 

adjusted for the number of terms in the model, and the obtained results are 

analysed using Design Expert 12. 
Tables 4 to 6 show the results of the analysis of variance for Ra, Ry, 

and Rz, respectively. This analysis was performed for p-values of less than 

0.05 (95% reliability or better). Table 4 summarizes the results of the analysis 

of variance for the surface roughness criterion Ra, and it is noted that the most 

important factor affecting the criterion of surface roughness Ra is the feed rate 

(fz) with a contribution of 52.37%. The increase in feed rate generates furrows 

which become deeper and wider with each increase in the feed rate. The cutting 

speed has a contribution of 37.88% and it is the second most influential factor. 

In the third position, it goes to the effect of product fz*fz with a contribution of 

4.40%. The depth of cut (ap) effect is insignificant, but we do not take it into 

account because its reliability does not exceed 8%. We also neglect the 

interactions of fz×ap, ap×Vc, and Vc×fz as well as the effects of products Vc², 

and ap² because they are not important. 

Table 5 summarizes the results of the ANOVA analysis for the 

roughness criterion, Ry. It is noted that the feed rate contributes the greatest 

effect with 80.97%, then the cutting speed has a contribution of 12.90%, 

followed by the interaction of combined parameter Vc×fz with a contribution 

of 1.55%. Regarding the depth of cut, interactions, and effects of products have 

a low contribution. Referring to Table 6, the feed rate and the cutting speed are 

the two most important factors contributing to the effect of the roughness Rz, 

with contributions of 42.01%, and 24.44%, respectively, followed by fz², and 

Vc² with contributions of 13.44%, and 3.56%, while the other factors are 

insignificant. 

 

Main effects and interactions 
Figures 6, 7, and 8 represent the main effects plot in which the differences 

between the average responses of one or more factor levels were examined. 

This is a major effect when different levels of a factor affect the response. The 

main effects plot shows a plot of the mean response for each factor level 

connected to a line. The main effects plot shows that feed rate is the most 

influential factor as it exhibits the greatest trend for roughness criteria (Ra, Ry, 

and Rz) as a function of feed rate, followed by cutting speed, and finally, the 

effect of depth of cut, which does not affect significantly with respect to cutting 

speed and feed rate as shown in the main effects diagram of Ra, Ry, and Rz. 
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Table 4: Analysis of variance for Ra 

 
Source Df SS MS F P Cont.% Remarks 

Regression 9 163.255 18.1395 119.761 0.000000 95.22% Significant 

Vc 1 64.952 0.8116 5.358 0.024458 37.88% Significant 

fz 1 89.783 17.1105 112.967 0.000000 52.37% Significant 

ap 1 0.584 0.0014 0.009 0.924464 0.34% Insignificant 

Vc×Vc 1 0.235 0.2354 1.554 0.217919 0.13% Insignificant 

fz×fz 1 7.546 7.5464 49.823 0.000000 4.40% Significant 

ap×ap 1 0.075 0.0746 0.493 0.485825 0.04% Insignificant 

Vc×fz 1 0.001 0.0009 0.006 0.939487 0.000% Insignificant 

Vc×ap 1 0.020 0.0199 0.131 0.718424 0.01% Insignificant 

fz×ap 1 0.059 0.0591 0.390 0.534957 0.03% Insignificant 

Error 54 8.179 0.1515     

Total 63 171.435      

 

Table 5: Analysis of variance for Ry 

 
Source Df SS MS F P Cont.% Remarks 

Regression 9 330.787 36.7541 36.5299 0.00001 85.89% Significant 

Vc 1 49.689 49.689 49.387 0.001298 12.90% Significant 

fz 1 271.373 271.373 269.72 0.00001 80.97% Significant 

ap 1 0.0761 0.0761 0.0757 0.78432 0.024% Insignificant 

Vc×Vc 1 1.806 1.806 1.7948 0.18595 0.46% Insignificant 

fz×fz 1 1.415 1.415 1.4065 0.24083 0.36% Insignificant 

ap×ap 1 0.029 0.029 0.0292 0.864882 0.007% Insignificant 

Vc×fz 1 6.003 6.003 5.9665 0.017883 1.55% significant 

Vc×ap 1 0.368 0.368 0.3653 0.548103 0.09% Insignificant 

fz×ap 1 0.011 0.011 0.0113 0.915879 0.002% Insignificant 

Error 54 54.331 1.0061     

Total 63 385.118      

 

Table 6: Analysis of variance for Rz 

 
Source Df SS MS F P Cont.% Remarks 

Regression 9 210,334 23,370 31,877 0,000000 84.16 Significant 

Vc 1 61,072 14,607 19,924 0,000041 24.44 Significant 

fz 1 105,001 36,898 50,329 0,000000 42.01 Significant 

ap 1 0,252 0,485 0,662 0,419384 0.1 Insignificant 

Vc×Vc 1 8,895 8,895 12,133 0,000990 3.56 Significant 

fz×fz 1 33,583 33,583 45,807 0,000000 13.44 Significant 

ap×ap 1 0,217 0,216 0,295 0,588814 0.087 Insignificant 

Vc×fz 1 0,638 0,638 0,870 0,354900 0.26 Insignificant 

Vc×ap 1 0,633 0,632 0,863 0,356959 0.26 Insignificant 

fz×ap 1 0,042 0,041 0,057 0,811982 0.017 Insignificant 

Error 54 39,589 0,733     

Total 63 249,923      

DF: degree of freedom; SS: sum of squares; MS: adjusted mean squares. 
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Figure 6: Main effects plot for Ra 

 

 
 

Figure 7: Main effects plot for Ry 

 

 
 

Figure 8: Main effects plot for Rz 
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Figures 9, 10, and 11 show the interaction diagram in which parallel 

lines indicate the absence of interaction between the two segments: the greater 

the difference in slope between the lines, the greater the degree of interaction. 

However, the interaction plot does not indicate whether the interaction is 

statistically significant. It appears from the interaction diagrams (Ra, Ry, and 

Rz) that the interaction of the cutting conditions does not have a significant 

impact on the surface roughness criteria (Ra, Ry, and Rz) except in the case of 

the interaction between the cutting speed and the feed rate in the two diagrams 

of Ry and Rz. We, therefore, notice a small convergence of the roughness 

values Ry when the feed rates are high. Moreover, the roughness values of Rz 

are approachable when the feed rate increases, especially when fz=0.096 

mm/tooth.  

 

 
 

Figure 9: Interaction plot for Ra 

 

 
 

Figure 10: Interaction plot for Ry 
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Figure 11: Interaction plot for Rz 

 

Regression equations 
The relationship between input parameters and performance measurements 

(outputs) is modelled by quadratic regression using Minitab 16 software. The 

regression equations are obtained together with determination coefficients 

(R2). The arithmetic mean roughness (Ra) model and coefficients of 

determination are given in Equation (11). 

 

𝑅a=3.0909 - 0.004458 Vc + 46.4462 fz - 0.124696 ap- 
 4.109×10-6Vc2- 0.000392Vc×Fz - 0.000537084 Vc×ap 
 -121.033 fz²- 2.11146 fz×ap+0.853516 ap2 
R²= 95.23%    ,    R²(adj)= 94.43% 

(11) 

 

The maximum height of the profile (Ry) model is given below in 

Equation (12). Its coefficient of determination is R2=85.89%. 

 

Ry= 7.80398 - 0.0158878 Vc + 36.463 fz - 0.928013 ap  
+ 1.138×10-5  Vc² +0.032419 Vc×fz + 0.002308 Vc×ap 
- 52.4124 Fz²+0.924819 fz×ap + 0.535938 ap²  
R²= 85.89% 

(12) 

 

The mean of the third point height (Rz) model is given below in 

Equation (13). Its coefficient of determination is R2=84.95%. 

 

Rz= 5.66873 - 0.0190703 Vc + 36.5371 fz + 2.17619 ap 
+ 2.52746×10-5  Vc2+  0.0113375 Vc×fz -  
0.00303 Vc×ap- 77.2339 fz²+2.09941 fz×ap -1.455 ap² 
R²= 84.16% 

(13) 
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Models are reduced by eliminating terms with no significant effect on 

the responses, and they are given by Equation (14) and Equation (15). 

 

Ra  =  3.46201 - 0.00686135 Vc + 45.309 fz - 121.033 fz² 
R² = 94.66% 

(14) 

 

Ry  =  7.4366 - 0.00891901 Vc + 25.2762 fz  
+ 0.0324191 fz×Vc   with  R² = 84.93% 

(15) 

 

Rz  =  6.10858 - 0.0195655 Vc + 39.9393 fz  
+ 2.52746×10-5Vc²- 77.2339 fz² 
R²= 84.19% 

(16) 

 

Response surface and contour plots of Ra, Ry, and Rz 
Response surfaces (as shown in Figures 12, 13, and 14) show that the feed rate 

has the greatest effect and that each reduction in the feed rate reduces the 

surface roughness parameters significantly, followed by the cutting speed with 

a significant effect, while the depth of cut is minimally affected. 

These graphs (Figures 12, 13, and 14) also show that high roughness 

criteria require a high feed rate (0.192 mm/tooth) and low cutting speed (57 

m/min), while low roughness criteria require a low feed rate (0.024 mm/tooth) 

and high cutting speed (440 m/min). Therefore, the best roughness is achieved 

by applying a small feed rate and a high cutting speed. 

Model verification was performed using residual analysis. The coloured 

dots indicate the surface roughness value. The curves of the normal probability 

of Ra, Ry, and Rz are presented in Figures 15 to 17. It is clear that the residuals 

are very close compared to the straight line of normality, which implies that 

the errors are normally distributed. Thus, the already obtained mathematical 

models can be used to predict surface roughness. 

Table 7 shows the results of the ANOVA analysis for the MRR. It is 

noted that all factors (fz, Vc, and ap) and interactions (fz×ap, ap×Vc, and 

Vc×fz) have no significant effect; thus, the feed rate and the cutting speed are 

the two important factors contributing to the effect of the MRR with 

contributions of 29.69% and 29.09%, respectively. The interaction (Vc×fz) has 

a contribution of 14.87%, followed by the depth of cut with a contribution of 

11.62% of the total effect, while the interactions (fz×ap and ap×Vc) have low 

contributions (5.94% and 5.82%), respectively. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 12: Response surface for Ra as a function of (a) Vc, fz, (b) Vc, ap, and 

(c) ap, fz 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 13: Response surface for Ry as a function of (a) Vc, fz, (b) Vc, ap, and 

(c) ap, fz 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 14: Response surface for Rz as a function of (a) Vc, fz, (b) Vc, ap, and 

(c) ap, fz 
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Figure 15: Normal probability of Ra     

 

 
 

Figure 16: Normal probability of Ry 

 

 
 

Figure 17: Normal probability of Rz 
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Table 7: Analysis of variance for MRR 

 
Source  DF SS MS F P Cont.% Rem. 

Regr. 9 4595454514 510606057 195,7 0,000 97.03% Significant 

Vc 1 1377709478 40774922 15,63 0,000 29.09% Significant 

fz 1 1406419728 42101246 16,14 0,000 29.69% Significant 

ap 1 550338006 15201146 5,829 0,020 11.62% Significant 

Vc*fz 1 704162218 704162218 70,00 0,999 14.87% Insignificant 

Vc*ap 1 275541693 275541693 105,6 0,809 5.82% Insignificant 

fz*ap 1 281283390 281283390 107,8 0,999 5.94% Insignificant 

Error 54 140831875 2607998    

Total 63 4736274157     
2 

 

Main effects and interactions of MRR 
For the main effects, the diagram in Figure 18 illustrates that the depth of cut 

has almost a constant effect between all levels, while the increase in feed rate 

and speed of cut produces a simple increase in the effect between their levels. 

Figure 19 indicates the interactions for MMR. From these diagrams, the 

interactions of the three cutting parameters (fz×ap, ap×Vc, and Vc×fz) have 

no significant impact on the material removal rate. The mathematical model 

can be reduced as follows: MRR= f (Vc, fz, and ap).  
 

 
 

Figure 18: Main effects plot for MMR; mmᶾ/min 
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Figure 19: Interaction plot for MMR, mmᶾ/min 

 

Regression equations 
The material removal rate RMM model is given below in Equation (17). 

 

𝑀RR=6557,07 - 31,6003 Vc - 72856,3 fz - 13114,1 ap +  
 351,115 Vc × fz + 63,2007 Vc × ap + 145713 fz × ap 
R² = 97.03   ,   Adjusted R² = 96,71% 

(17) 

 

Multi-response optimization Ra and MRR using desirability approach. 
Optimization methods were used to obtain the optimum machining conditions 

for milling operations using surface roughness and MRR as responses. 

In order to decrease the level of desirability, Figure 20 and Table 8 show 

the optimization results (minimize Ra and maximize MRR). Values of optimal 

cutting parameters were found to be as follows: Vc=440 m/min, fz=0.096 

mm/tooth, and ap=0.8 mm. The optimum surface roughness and MRR were as 

follows: Ra=3.756 μm and MRR=23435.874 mm3/min with combined 

desirability=0.830035. 

 

 
 

Figure 20: Ramp function graph for surface roughness and MRR 
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Table 8: Response optimization for surface roughness and MRR 

 

Number Vc fz ap Ra MRR Desirability 

1 440.00 0.096 0.800 3.756 23435.874 0.830035 
2 440.00 0.096 0.792 3.749 23206.315 0.828512 

3 440.00 0.096 0.769 3.732 22543.256 0.825466 
4 440.00 0.096 0.717 3.695 21067.795 0.814805 

5 439.99 0.096 0.710 3.690 20845.963 0.813282 
6 440.00 0.096 0.704 3.687 20686.579 0.811759 

7 440.00 0.096 0.688 3.677 20220.899 0.808713 

8 440.00 0.096 0.626 3.642 18445.980 0.79196 
9 440.00 0.096 0.548 3.608 16194.432 0.767592 

 

 

Conclusions 
 

In this work, it studied the effects of these parameters such as feed rate, cutting 

speed, and depth of cut on roughness criteria (Ra, Ry, and Rz) with Material 

Removal Rate (MRR) while face milling C45 steel using a GC4040 cutting 

insert. Based on the experimental results, the following conclusions can be 

drawn: 

i. The ANOVA analysis of the surface roughness criteria reveals that the 

feed rate (fz) has a significant effect on the different surface roughness 

criteria (Ra, Ry, and Rz) with contributions of 52.37%, 80.97 %, and 

54.96%, followed by the cutting speed (Vc) with contributions of 37.88%, 

12.90%, and 24.43% on each Ra, Ry, and Rz, respectively, while the 

effect of depth of cut is negligible. 

ii. The contour plots in this work enabled us to visualize the response 

surface in two dimensions, and these two methods make it possible to 

compare the influence of factors on the response. 

iii. The mathematical model of the MRR was the most representative model 

because its coefficient of determination R2 was 97.03%, followed by the 

model of Ra, Ry, and Rz with 95.23%, 85.89%, and 84.95%, respectively. 

Producing very good ratios, it shows that the studied surface roughness 

criteria and MRR are mainly related to each response of the cutting 

parameters (Vc, fz, and ap) which is close to 100%. 

iv. Values of optimal cutting parameters are found to be as follows: Vc=440 

m/min, fz=0.096 mm/tooth, and ap=0.8 mm. The optimum surface 

roughness and MRR are as follows: Ra=3.756 μm and MRR=23435.874 

mm3/min with a combined desirability=0.830035. 
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