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ABSTRACT 

Surface finish and temperature rise are the crucial machining outcomes 
since it determines the quality of the machining and the tool life. During 

machining operations, choosing optimal machining parameters is critical 

since it affects the machining outcome. In this work, Multi-Objective Genetic 
Algorithm (MOGA) optimization is used to find the combination of 

machining parameters at different levels of hardness of 20, 36, and 43 to 

obtain minimum surface roughness and minimum cutting temperature in 
turning operation. Cutting depth, cutting speed, and feed rate are the 

machining variables that are used in the process of optimization. From the 

results, it shows that the minimum temperature rise is 243.333 ℃ with a 
surface roughness of 1.975 µm during machining of 20 hardness. It also 

observed that the hardness of the material significantly affects the surface 

roughness and temperature rise. The outcome shows that as the hardness of 
the material is increasing the temperature is increasing while the surface 

roughness is decreasing. This research also revealed that using a MOGA to 

optimize multi-objective replies produces positive outcomes. 

Keywords: Optimization; Machining Parameters; Genetic Algorithm; 

Turning 



Mukri et al. 

26 

Introduction 

Turning is the process of eliminating metal from the external diameter of a 

revolving cylindrical workpiece by lowering the workpiece's diameter to a 
predetermined size while achieving a smooth metal surface [1]. This 

machining method is one of the most critical in creating components for a 

wide range of applications, including prototypes like custom-designed shafts 
and fasteners that are utilised in small quantities [2].  It is critical to choose 

cutting parameters for turning operations in order to obtain excellent cutting 

performance [3]. During machining, the cutting zone temperature is 
extremely high, and the chip absorbs the majority of the heat generated by 

the cutting operation. Tool wear, tool life, and surface quality all suffer as a 

result of high temperatures [4]-[5]. This statement is supported by Pimenov 
et al. [6] recent study is focused on cutting tool wear, cutting force 

determination, surface roughness fluctuations, and other machining 

reactions. Variations in these machining reactions cause significant changes 
in dimensional accuracy and productivity [7]. For every machining 

operation, high cutting temperatures and their associated detrimental 

consequences are a major problem. This must be controlled in order to 
enhance machined product quality, reduce machining costs, and increase 

production rates [8]. According to Halim et al. [9], excessive heat would 

develop in the cutting zone, raising the cutting temperature. As a result of 
this circumstance, cutting force and tool wear rates increased rapidly, and 

the surface quality deteriorated [9]. So, the optimization of this process is 

required to improve the efficiency of the process. 
As stated by Bhuiyan et al. [10], many academics have been focused 

on optimizing process parameters in machining by devising an analytical 

technique for determining the ideal cutting speed in a single stage turning 
process since 1950. Generally, optimization methods can be classified into 

two which are conventional methods and non-conventional methods. 

Traditional approaches such as ANOVA, the Taguchi method, and others 
start with an estimation and converge towards the optimal solution with each 

iteration. This convergence is determined by the starting approximation 

used. Although traditional approaches are claimed to be effective in 
addressing one type of machining optimization issue, they may not be 

effective in tackling another [11]. There are still a few researchers using this 

technique in their studies. The Taguchi method was used by Akkus and 
Yakka [12] to determine the best value of surface roughness and the most 

effective parameters that contribute to surface roughness. According to the 

findings, among the three factors involved, cutting speed, feed rate, and 
cutting depth, the feed rate is the most important element that leads to surface 

roughness [12]. Using the Taguchi and ANOVA methodologies, Krishna et 

al. [13] and Palaniappan et al. [14] conducted research that highlighted the 
optimisation of turning process parameters to achieve excellent surface 
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quality. According to the findings, both researchers agree, the feed rate is the 
significant parameter that will affect surface roughness.  

In recent years, engineering optimization problems have seen an 

increase in popularity for non-traditional optimization techniques including 
Genetic Algorithms (GA), Simulated Annealing (SA), Artificial Neural 

Networks (ANN), and many more approaches. These algorithms have been 

discovered to be promising search and optimization techniques for 
complicated optimization issues. The same approach hired by Shah et al. 

[15], Manav and Chinchanikar [16], Durga et al. [17], and Narayan et al. 

[18] which is a multi-objective genetic algorithm (MOGA), to optimize 
machining settings such as that response variables including cutting force, 

temperature, material removal rate and surface roughness were optimized to 

their ideal range. The factors that affect each response variable are cutting 
speed, feed rate, and depth of cut. 

To observe the effectiveness of conventional with non-conventional 

optimization, a lot of researchers mixed conventional and non-conventional 
methods in their study to optimize the machining parameters in turning 

operations. Kumar et al. [19] and Butola et al. [20] used the same Taguchi, 

ANOVA, and GA methodologies to optimize machining settings in order to 
get the finest Material Removal Rate (MRR), surface roughness, and 

temperature values. Taguchi and ANOVA are utilized to discover key 

values. ANOVA and GA are used to optimize process parameters and are 
agreed upon by both researchers. Mia and Dhar [21] provide work on the 

development of mathematical by using Response Surface Methodology 

(RSM), fuzzy inference system (FIS) to formulate the predictive model and 
simulated annealing (SA) in order to formulate the optimization model for 

the average surface roughness parameter in turning. The model is solved 

using GA, and the ideal start time for non-critical processes as well as the 
ideal duration for each process are determined [22]. Chabbi et al. [23] 

investigated the influence of cutting parameters on surface roughness, 

cutting force, cutting power, and productivity during turning using three 
optimisation techniques: RSM, Artificial Neural Network (ANN), and 

Desirability Function (DC). Bolivar et al. [24] employed an ANN and a GA 

to create a system that optimizes cutting insert selection and cutting 
parameters throughout the turning process (GA). This previous research 

showed that GA has a good reputation in searching optimize solutions not 

just single objective but multi-objective problems [7]. 
According to the background literature, a substantial study has been 

done on the relationship between the turning process and surface roughness.  

However, there have only been a few attempts to optimise the temperature 
rise during the turning process, despite the fact that this is one of the crucial 

factors that can affect both the surface roughness and tool life. The purpose 

of this study is to determine how cutting speed, feed rate, and depth of cut 
affect temperature increase and surface roughness when the material 
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hardness has been changed, given the relevance of temperature rise and 
surface roughness in the turning process. 

 

 

Optimization using Multi-Objective Genetic Algorithm 
(MOGA) 
 

For parametric optimization, the genetic algorithm has proved to be one of 
the most common multi-objective optimization strategies. Given that it 

works with a population of potential solutions, a genetic algorithm can be 

used to solve multi-objective optimisation problems and find many solutions 
simultaneously [25]. This function was used as the objective function in the 

MOGA Toolbox of MATLAB 2018b. For the optimization of surface 
roughness and the minimizing of temperature rise in turning, the objective 

function values are determined accordingly.  
In this study, the optimization was conducted to obtain minimum 

temperature rise and also smaller surface roughness during the turning 

process. To generate minimum surface roughness, the machining setup 

needs to be set to high speed, and this will course a temperature rise at the 
tool and also the workpiece. Because these two goals are incompatible, 

MOGA optimization is utilized to discover the feed rate, depth of cut, and 

cutting speed combination that creates the best surface roughness and 
temperature rise throughout the machining process. The objective functions 

for this work can be represented as follow: 

 

𝑓1 = 𝑀𝑖𝑛 𝑇 (𝑓, 𝑑, 𝑣) 

 

𝑓2 = 𝑀𝑖𝑛 𝑅𝑎 (𝑓, 𝑑, 𝑣) 

 
The objective function used to represent temperature rise and surface 

roughness for the turning process is based on work by Tanikic [26] using 

RSM modelling. Equations (1) and (2) represent the objective function for 
temperature rise and surface roughness that has been used in this 

optimization [26]. 

 

𝑇 =  −96.769 +  6.665. 𝐻𝑅𝐶 +  1.659. 𝑉  
+ 247.165. 𝑓 +  113.067. 𝑎 

(1) 

 

𝑅𝑎 =  4.365 –  0.0501. 𝐻𝑅𝐶 –  0.0156. 𝑉 

+ 9.007. 𝑓 +  0.225. 𝑎 

(2) 

 

While HRC is the hardness of materials, V is cutting speed, f is feed rate and 
a is depth of cut. 
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The algorithm is initiated by generating a randomly initial population. 
The initial population is made up of several factors that must be optimized, 

such as depth of cut, cutting speed, and feed rate in this example. The random 

number was chosen based on the lower and upper limits for each variable. 
The workpiece material was steel, AISI designation 4140, with dimensions 

45 x 250 m. The cutting tool used and assembled of two parts is adopted: 

cutting tool holder PCLNR 32 25 P12, cutting tool insert CNMG 12 04 08 
(grade 235). The lower and upper bounds for the variable parameters are 

listed below: 

80 ≤ cutting speed, v ≤ 140 
0.071 ≤ feed rate, f ≤ 0.321 

0.5 ≤ depth of cut, a ≤ 2.0 

These values were chosen based on the common setup used in the 
turning operation as reported by [25]. After a randomly initial population 

was created, then the real numbers of parameters transform into a sequence 

of a number of binary codes that know as a string. The string consists of 
chromosomes that indicate possible solutions. The independent variables are 

coded by a set of genes on the chromosome. The number of bits in the string 

equals the length of the chromosome, L. Each answer is offered by the L-bit 
binary code of chromosome, C. There are 2L -1 viable solutions for choosing. 

The optimization process began with the creation of a chromosome 

containing the parameters that needed to be tweaked. The following is a 
generic representation:  

 

Ck = [Xk1, Xk2…Xkn]                                              
 

𝐶𝑘 =  [|110 … 00||101 … 1||001 … 11|] 
 

 

where X1, X2, and X3 are the depth of cut, cutting speed, and feed rate 
respectively. The first generation of the population is then formed, complete 

with fitness function values. The next stage is to assess each chromosome in 

the population to see how it will be used in the second generation. There are 
numerous techniques for selecting chromosomes to be passed down to the 

next generation, but the operator utilized in this work is a tournament.  

The tournament selection technique is carried out by putting selection 
pressure on the participants by holding a tournament with s contestants. In a 

tournament, for example, there are s=6 competitors. Six solutions will 

compete in a tournament, with the winner advancing to the mating pool. As 
demonstrated in Figure 1, each solution managed to participate in precisely 

two tournaments since the event was run in a methodical manner. The 

number of populations in the selection operator remains the same, but the 
new population has two better copies. The tournament winner, who has 

X1 

 
X2 X3 
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greater average fitness than the general population, is included in the mating 
pool.  

 

 
 

Figure 1: Tournament selection process with 6 contestants 
 

The chromosome will go through a crossover phase after the selection 

operator. Since the reproduction phase would either replicate a good solution 
or eradicate the poor solution, no new solution is formed in the population 

during this phase. The crossover and mutation operators are used to generate 

a new solution. To create a new solution or offspring, the crossover operator 
selects two solutions (parents) from the mating pool and switches certain 

string segments between the two solutions at random positions on the string.  
One drawback of the crossover operator is that not all of the newly 

produced children are better than their parents. Regardless of whether the 

new offspring is better or worse, other cross-sites or two other strings are 
picked for the crossing. While the offspring product of the crossover may 

not create better results than either parent solution, it is apparent that the 

probability of creating better solutions is higher than with random selection. 
This is due to reproduction, the operator before the crossing, being active. 

The representations of the string are probably going to have some 

advantageous bit combinations if the solution makes it through the 
tournament reproduction phase. Despite the fact that the crossover produces 

a poor solution, the bad solutions are removed during the subsequent 

reproduction step, leading to the conclusion that bad solutions have a brief 
life cycle. There is a chance you will receive a horrible solution, but there is 

also a chance you will get a good one. Because the offspring outperforms 

their parents, more reproductions are predicted in successive reproduction 
operations, and these solutions are more likely to survive until the following 

generation's crossover operator. As a result, as the number of iterations 

increases, so does the number of solutions in the population with comparable 
chromosomes. 

The algorithm will next go on to the mutation operator, which alters 

a string locally in order to build a better string. For each bit, the bit-wise 
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mutation process needs the creation of a random integer. The solution in the 
population is then evaluated to decide whether to stop the algorithm or 

generate a new generation. This procedure is continual until the termination 

condition is reached. The flowchart of MOGA can be summarized in Figure 
2. The operator setup that is used in the MOGA is listed in Table 1. 

 

 
 

Figure 2: A flowchart of working principle of genetic algorithm 
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Table 1: Operators for MOGA 
 

Parameters Setting values 

Population size, N 50 
Generation 300 
Selection function Tournament 
Crossover probability, Pc 0.8 
Crossover function Intermediate 

Mutation function Constraint dependent 

 

 

Results and Discussion 
 

Figures 3, 4, and 5 show the Pareto-optimal solutions for various hardness. 

The Pareto front for temperature increase and surface roughness for hardness 
20 HRC is shown in Figure 3. Based on Figure 3, the Pareto front consists 

of 18 pareto-optimal solutions, and the algorithm converged at 140 

generations. When the cutting parameters are 80 m/min, 0.071 mm/rev, and 
0.5 mm for cutting speed, feed rate, and depth of cut, the lowest temperature 

rise achievable in this method is 243.333 °C. Meanwhile, the smallest 

surface roughness observed is 1.975 µm. The other solutions obtained in the 
Pareto front are listed in Table 2.  

 

 
 

Figure 3: Pareto optimal front for hardness 20 HRC 

 

Figure 4 shows the Pareto front for the temperature and surface 
roughness for the hardness 36 HRC. The Pareto front has 18 Pareto-optimal 

solutions, according to Figure 4, and the algorithm converged at generation 

506. The lowest temperature rise achieved in this method is 363.071 °C when 
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the cutting parameters are 85.023 m/min, 0.084 mm/rev, and 0.504 mm for 
cutting speed, feed rate, and depth of cut, respectively. In the meanwhile, the 

least surface roughness found is 1.246 μm. Table 3 lists the alternative Pareto 

front solutions. 
 

Table 2: Pareto optimal solutions for hardness 20 HRC 

 

No 
Cutting 
speed 

(m/min) 

Feed rate 
(mm/rev) 

Depth of cut 
(mm) 

Temperature 
(°C) 

Surface 
roughness 

(µm) 
1 80.000 0.071 0.500 243.333 2.867 
2 137.579 0.072 0.506 339.731 1.975 

3 135.026 0.071 0.506 335.284 2.011 
4 137.579 0.072 0.506 339.731 1.975 
5 132.284 0.071 0.502 330.356 2.055 
6 99.853 0.073 0.513 278.244 2.577 

7 128.646 0.071 0.509 325.175 2.113 
8 80.000 0.071 0.500 243.333 2.867 
9 114.039 0.072 0.507 301.002 2.351 

10 106.522 0.072 0.507 288.388 2.463 

11 126.224 0.072 0.510 321.286 2.153 
12 124.417 0.072 0.509 318.181 2.183 
13 120.469 0.071 0.502 310.647 2.236 

14 103.947 0.072 0.504 283.728 2.501 
15 117.226 0.072 0.502 305.565 2.294 
16 91.631 0.072 0.505 263.391 2.692 
17 111.625 0.072 0.509 296.957 2.381 

18 89.028 0.072 0.505 259.079 2.734 

 

 
 

Figure 4: Pareto optimal front for hardness 36 HRC 
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Table 3: Pareto optimal solutions for hardness 36 HRC 
 

No 
Cutting 

speed 

(mm/min) 

Feed rate 

(mm/rev) 

Depth of 

cut 

(mm) 

Temperature 

(°C) 

Surface 

roughness 

(µm) 
1 139.969 0.084 0.504 453.044 1.246 
2 85.203 0.084 0.511 363.071 2.103 
3 85.203 0.084 0.511 363.071 2.103 

4 139.969 0.084 0.504 453.044 1.246 
5 121.978 0.084 0.512 424.234 1.530 
6 87.562 0.084 0.528 368.906 2.072 
7 119.992 0.084 0.504 419.944 1.557 

8 101.709 0.084 0.510 390.348 1.845 
9 132.502 0.084 0.523 442.870 1.367 

10 92.786 0.084 0.515 376.053 1.987 
11 95.957 0.084 0.510 380.794 1.934 

12 108.978 0.084 0.523 403.830 1.735 
13 98.451 0.084 0.511 385.112 1.898 
14 113.793 0.084 0.510 410.304 1.656 

15 102.682 0.084 0.515 392.516 1.831 
16 124.773 0.084 0.504 427.911 1.483 
17 111.288 0.084 0.511 406.308 1.695 
18 135.219 0.084 0.515 446.555 1.326 

 

The Pareto front for temperature and surface roughness for hardness 
43 HRC is shown in Figure 5. As shown in Figure 5, the Pareto front consists 

of 18 pareto-optimal solutions and converged at generation 332. When the 

cutting parameters are 80.133 m/min, 0.073 mm/rev, and 0.501 mm for 
cutting speed, feed rate, and depth of cut, the lowest temperature rise 

achievable using this method is 397.393 °C. Meanwhile, the least surface 

roughness determined is 0.781 µm, and Table 4 provides the Pareto front 
solutions. 

Because the performance measurements are inherently contradictory, 

the surface quality degrades as the temperature rises, and the same pattern of 
performance measures can be seen in the solutions produced for all hardness, 

as illustrated in Figures 3, 4, and 5 [27]. It also observed that as the hardness 

of the workpiece is increasing, the temperature rise obtained is increasing 
but the surface roughness is decreasing. Because none of the Pareto optimum 

set's solutions is superior to the others, each of them is a viable option. The 

process engineer's requirements determine if one solution is better than the 
other. It should be highlighted that all of the solutions are equally good, and 

depending on the manufacturer's requirements, any set of input parameters 

can be used to get the matching response values. 
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The creation of the Pareto-optimal front, which comprises the final 
set of solutions, is seen in Figures 3, 4, and 5. The continuous nature of the 

optimization issue addressed determines the form of the Pareto optimum 

front. The findings in Tables 2, 3, and 4 indicate that the whole range of input 
parameters is mirrored in 18 Pareto-optimal solutions, with no bias towards 

the higher or lower side of the parameters. Because the performance 

measurements are inherently contradictory, the surface quality degrades as 
the temperature rises, and the same pattern of performance measures is found 

in the solutions derived for all hardness. As none of the Pareto optimum set's 

solutions is superior to the others, each of them is a feasible option. The 
process engineer needs to determine which solution to select. It should be 

emphasized that all of the solutions are equally effective, and depending on 

the manufacturer's criteria, any set of input parameters can be used to 
produce the associated response values. 

 

 
 

Figure 5: Pareto optimal front for hardness 43 HRC 

 

Effect of cutting speed on the temperature rise and surface 
roughness 
Figure 6 and Table 5 show the interaction effect between cutting speed (V) 

and temperature (T) for every hardness. Cutting speed has a considerable 
impact on temperature rise, as seen in Figure 6. In general, the temperature 

increase as the cutting speed increase. When the cutting speed is 80 mm/min, 

the temperature is 243.333 °C, and the temperature increase to 339.731 °C 
when the cutting speed is 137.579 m/min for hardness 20 HRC. For hardness 

36 HRC, the lowest temperature is 363.071 °C for the cutting speed of 

85.203 m/min while the highest temperature is 453.044 °C for the cutting 
speed of 139.969 mm/min. For hardness 43 HRC, the value of cutting speed 

is 80.133 m/min, the temperature is 397.393 °C. These results are tallying 
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with the theory of machining. All of the energy lost during the cutting 
process as a result of plastic deformation is converted to heat, raising the 

temperature in the cutting zone. Heat generation is inextricably tied to plastic 

deformation and friction. As the cutting speed rises, friction increases, 
resulting in a rise in cutting zone temperature [28]. 

 

Table 4: Pareto optimal solutions for hardness 43 HRC 
 

No 
Cutting 

speed 

(mm/min) 

Feed rate 

(mm/rev) 

Depth of 

cut 

(mm) 

Temperature 

(°C) 

Surface 

roughness 

(µm) 
1 124.587 0.072 0.503 471.252 1.032 
2 101.724 0.072 0.500 432.880 1.382 
3 109.526 0.072 0.501 445.942 1.263 

4 92.886 0.073 0.502 418.628 1.530 
5 130.332 0.072 0.508 481.346 0.941 
6 128.589 0.072 0.500 477.461 0.964 
7 115.327 0.073 0.503 455.988 1.180 

8 106.088 0.071 0.500 439.985 1.310 
9 137.684 0.074 0.502 493.335 0.843 

10 135.799 0.074 0.501 489.958 0.868 
11 85.418 0.073 0.502 406.282 1.648 

12 133.469 0.073 0.502 486.159 0.902 
13 122.544 0.071 0.501 467.345 1.054 
14 82.278 0.073 0.502 401.140 1.697 
15 112.513 0.072 0.500 450.810 1.215 

16 97.936 0.073 0.506 427.472 1.452 
17 80.133 0.073 0.501 397.393 1.728 
18 139.943 0.071 0.500 496.126 0.781 

 

Table 5: Optimize process predicted by GA 
 

Hardness 20 HRC Hardness 36 HRC Hardness 43 HRC 
V (m/min) 

(mm/min) 

T (°C) 

(ºC) 

V (m/min) 

(mm/min) 

T (°C) 

(ºC) 

V (m/min) 

(mm/min) 

T (°C) 

(ºC) 80.000 243.333 85.203 363.071 80.133 397.39
3 89.028 259.079 87.562 368.906 82.278 401.14
0 106.522 288.388 111.288 406.308 109.526 445.94

2 111.625 296.957 113.793 410.304 112.513 450.81

0 135.026 335.284 132.502 442.870 137.684 493.33

5 137.579 339.731 139.969 453.044 139.943 496.12
6  

The results of the interaction between cutting speed (V) and surface 

roughness (SR) are shown in Figure 7 and Table 6. It is obvious that raising 
the cutting speed reduces surface roughness. This can be proven through 
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hardness 20 HRC, the surface roughness is 2.867 µm when the cutting speed 
is 80 m/min and the value of roughness decrease to 1.975 µm when the 

cutting speed value is 137.579 m/min. This phenomenon occurs for hardness 

36 HRC, when the cutting speed value is 85.203 m/min, the surface 
roughness is 2.103 µm. However, when the value of cutting speed is 139.969 

m/min, the value of surface roughness becomes 1.246 µm. The situation also 

happened for hardness 43 HRC, the value of cutting speed is 80.133 m/min, 
and the surface roughness value is 2.103 µm. Meanwhile, when the cutting 

speed value is 139.943 m/min, the value of surface roughness is 0.781 µm. 

This characteristic is related to the smaller built-up edge size at higher speeds 
when the built-up edge's impact becomes minimal. Furthermore, when the 

cutting speed increases, the cutting process becomes steadier, and vibration 

while cutting at the greatest speed is reduced. The result of the study is 
consistent with the study made by Anil et al. [29]. 

 

 
 

Figure 6: Interaction effect between cutting speed and temperature 

 
Table 6: Optimize process by GA 

 

Hardness 20 Hardness 36 Hardness 43 
V (m/min) SR (µm) V (m/min) SR (µm) V (m/min) SR (µm) 

80.000 2.867 85.203 2.103 80.133 1.728 
89.028 2.734 87.562 2.072 82.278 1.697 

106.522 2.463 111.288 1.695 109.526 1.263 
111.625 2.381 113.793 1.656 112.513 1.215 
135.026 2.011 132.502 1.367 137.684 0.843 

137.579 1.975 139.969 1.246 139.943 0.781 
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Figure 7: Interaction effect between cutting speed and surface roughness 

 

Effect of feed rate on the temperature rise and surface 
roughness 
Figure 8 depicts the interaction effect between feed rate and temperature for 

hardness 20 HRC, 36 HRC, and 43 HRC. According to Table 7, increasing 
the feed rate (f) will correspondingly raise the temperature (T) during 

machining. The lowest temperature is 243.333 °C when the feed rate is 0.071 

mm/rev. After that, the maximum temperature is 339. 731°C, when the value 
of the feed rate is 0.072 mm/rev for the hardness 20 HRC. For hardness 36 

HRC, the temperature is between 363.071 °C to 453.044 °C even though the 

feed rate is static at the value 0.084 mm/rev. When the hardness increases to 
43 HRC, there are little variations in terms of the value of feed rate. The 

lowest temperature is 397.393 °C when the feed rate is 0.073 mm/rev and 

the maximum temperature is 493.335 °C when the feed rate is 0.074 mm/rev. 
The reason for this is because when the feed rate increases, the contact length 

between the tool and the workpiece likewise expands. When the feed rate 

goes up, the chip area rises, which increases the friction between the tool and 
chip interface, causing the temperature at the tool-chip interface to rise 

accordingly as well. The results have supported the study that was made by 

Sulaiman et al. [30], the heat is generated more in the shear zone when the 
feed rate increases due to the increment in the chip’s segment which also 

contributes to the increase in friction.  

The interaction impact between feed rate and surface roughness is 
depicted in Figure 9 and Table 8. It is seen that a decrease in the feed rate at 

any setting of cutting speed decreases the surface roughness significantly. 

This can be seen through the hardness 20 HRC when the feed rate is 0.073 
mm/rev. The value of surface roughness is 2.577 µm. For hardness 43 HRC, 

the value of surface roughness becomes 1.728 µm when the value of the feed 

rate is 0.073 mm/rev, and the value of surface roughness decreases to 0.781 
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µm when the feed rate to 0.071 mm/rev. Decreasing feed results in flank 
wear which will deteriorate the surface of the workpiece. 

 

Table 7: Optimize process by GA 

 

 
 

Figure 8: Interaction effect between feed rate and temperature 

 

Table 8: Optimize process by GA 
 

Hardness 20 HRC Hardness 36 HRC Hardness 43 HRC 

f (mm/rev) SR (µm) f (mm/rev) SR (µm) f (mm/rev) SR (µm) 
0.073 2.577 0.084 2.103 0.073 1.728 
0.072 2.463 0.084 2.072 0.073 1.648 
0.072 2.381 0.084 1.695 0.073 1.530 
0.072 2.294 0.084 1.656 0.072 1.382 

0.071 2.113 0.084 1.367 0.072 1.215 
0.071 2.055 0.084 1.246 0.071 0.781 

 

Hardness 20 HRC Hardness 36 HRC Hardness 43 HRC 
f (mm/rev) T (°C) f (mm/rev) T (°C) f (mm/rev) T (°C) 

0.071 243.33

3 

0.084 363.07

1 

0.073 397.39

3 0.072 259.07

9 

0.084 368.90

6 

0.073 401.14

0 0.072 288.38

8 

0.084 406.30

8 

0.072 445.94

2 0.072 296.95
7 

0.084 410.30
4 

0.072 450.81
0 0.071 335.28

4 

0.084 442.87

0 

0.072 477.46

1 0.072 339.73

1 

0.084 453.04

4 

0.074 493.33

5 
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Figure 9: Interaction effect between feed rate and surface roughness 

 

Effect of depth of cut on temperature and surface roughness 
Table 9 and Figure 10 indicate the influence of cut depth on temperature. 

From Figure 10, it can easily find that increasing in the depth of cut (doc) 

will rise the temperature (T). It can be seen through the hardness 20 HRC 
when the temperature is 243.333 °C and the cut depth is 0.5 mm. When the 

depth of the cut is 0.509 mm, the temperature rises to 325.175 °C. The same 

thing happened to hardness 36 HRC when the temperature was 427.911 °C 
and the cut depth was 0.504 mm. However, the temperature rose to 368.906 

°C when the depth of cut began to rise by 0.528 mm. The same thing 

occurred for hardness 43 HRC; at 0.501 mm of cut depth, the temperature 
was 397.393 °C, and at 0.508 mm of cut depth, the temperature was 481.346 

°C. It is possible to argue that as cut depth increases the cutting insert 

experiences more cutting resistance, which raises temperature. Additionally, 
the total amount that the cutting tool took from the workpiece's radius during 

the cutting process was counted. High material hardness demands a deeper 

value of cut, increasing the strain on the tool and shortening tool life as a 
result of increased surface roughness. 
 

Table 9: Optimize process by GA 
 

Hardness 20 HRC Hardness 36 HRC Hardness 43 HRC 
doc (mm) T (°C) doc (mm) T (°C) doc (mm) T (°C) 

0.500 243.333 0.504 427.911 0.501 397.393 
0.504 283.728 0.510 410.304 0.502 401.140 
0.505 263.391 0.512 424.234 0.503 455.988 
0.507 288.388 0.515 446.555 0.503 471.252 

0.509 318.181 0.523 442.870 0.506 427.472 
0.509 325.175 0.528 368.906 0.508 481.346 
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Figure 10: Interaction effect between depth cut and temperature 

 

Table 10 and Figure 11 both display the interaction between surface 
roughness and depth of cut. It depicts how a deeper cut yields a lower-quality 

surface. According to Table 10, as the value of the depth of cut increases, so 

does the value of the surface roughness. With a hardness of 20 HRC, when 
the depth of cut is 0.502 mm, the surface roughness is 2.055 µm, and when 

the depth of cut is increased to 0.507 mm, the surface roughness increases to 

2.463 µm. For a cut depth of 0.504 mm, the lowest value of surface 
roughness for hardness 36 HRC is 1.246 µm. The value of surface roughness 

increases to 2.072 µm when the depth of cut is increased to 0.528 mm. When 

the surface roughness value is 0.964 µm and the depth of cut value is 0.5 
mm, this behaviour occurs for hardness 43. However, the measure of surface 

roughness increases to 0.941 µm when the depth of cut exceeds 0.508 mm. 

The cut depth is inversely related to the shear angle and heat-affected zone 
(HAZ). As the depth of the cut rises, the HAZ and shear angle increase, 

increasing the cutting force and friction, raising the temperature, and causing 

the removal of material to deposit on the tool's rake face [29]. As a result, as 
the depth of the cut rises, the surface roughness (SR) increases as well. 

 

Table 10: Optimize process by GA 
 

Hardness 20 Hardness 36 Hardness 43 
doc (mm) 

(mm) 

SR (µm) doc (mm)  

(mm) 

SR (µm) doc (mm)  

(mm) 

SR (µm) 

0.502 2.055 0.504 1.246 0.500 0.964 
0.502 2.236 0.515 1.326 0.502 0.843 
0.504 2.501 0.510 1.656 0.503 1.032 
0.505 2.692 0.515 1.987 0.503 1.180 

0.505 2.734 0.523 1.735 0.506 1.452 
0.507 2.463 0.528 2.072 0.508 0.941 
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Figure 11: Interaction effect between depth of cut and surface roughness 

 
Effect of the workpiece hardness on the temperature rise and 
surface roughness 
In this study, the effects of workpiece hardness on temperature rise and 

surface roughness are examined. Changes in the workpiece's surface 
hardness and roughness measurements were measured throughout the 

turning process. The three types of workpiece hardness that were used in this 

study are 20 HRC, 36 HRC, and 43 HRC. It was discovered that surface 
roughness decreases with increasing hardness, but temperature increases as 

hardness increases. Table 11 demonstrates that rising temperatures are 

correlated with increasing levels of hardness. The temperature is between 
243 °C and 339 °C, according to hardness 20. When the workpiece's 

hardness reaches 36, the temperature begins to rise between 363 °C and 453 

°C. When the hardness is 43, the value begins to rise, which is between 397 
°C and 496 °C. When the hardness is 20 HRC, the value for surface 

roughness ranges from 2.867 µm to 1.975 µm. When the hardness is 36 

HRC, the range starts to widen from 2.103 µm to 1.246 µm. Surface 
roughness starts to decrease with a hardness of 43 HRC, going from 1.728 

µm to 0.781 µm.   
According to the table, surface roughness increases in value as 

material hardness increases. The range of 2.867 µm to 1.975 µm is the 

surface roughness value for hardness 20 HRC. Surface roughness drops from 

a value of 2.103 µm to 1.246 µm when hardness rises to 36 HRC. When the 
hardness is 43 HRC, the surface roughness measurement falls between 1.728 

µm and 0.781 µm. Cutting speed significantly affects responses, as seen in 

Table 11. Lower cutting rates cause a rapid increase in surface roughness, 
whereas higher cutting speeds cause a quicker increase in hardness. The 

cutting parameter shows that the independent variable with the greatest 

influence on the response to the overall turning parameters was cutting 
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speed, followed by feed rate and depth of cut, which had negligible 
influence. This study coincides with the study conducted by Omat et al. [31]. 

As a result, machining has an obvious impact on the workpiece's surface 

layer's hardness and roughness, both of which are caused by the cutting 
parameters, particularly cutting speed. The turning process uses cutting force 

that causes the chips to rip as the tool moves forward, significantly 

deforming the plastic at the surface and in the layer’s underneath. This 
deformation aftereffect will affect the metal ductility, hardness, and strength. 

Meanwhile, the underlying material fracture occurs as a result of the chip's 

severe deformation, resulting in poor surface roughness. The metal 
characteristics are also affected by the form, size, and depth of cut of the 

surface grooves.  

The ability of a solid substance to endure persistent deformation 
without shattering is known as ductility in materials science. Ductility is also 

known as fracture strain or percent reduction in area. Increased surface 

hardness of the specimens resulted in a decrease in fracture strain. As a result 
of the plastic deformation created during machining, the material was 

projected to have been extended over a portion of its permitted plastic 

deformation, and hence the ductility of the hardened workpieces should have 
been reduced. Cutting speed had a significant impact on ductility, with high 

speeds resulting in a higher fracture strain value. This is because the surface 

roughness rises as the cutting speed lowers [32]. 
 

Table 11: Temperature range for every hardness 

 

Hardness 
(HRC) 

Cutting 
speed 

(m/min) 

Feed rate 
(mm/rev) 

Depth of 
cut 

(mm) 

Temperature 
(°C) 

Surface 
roughness 

(µm) 
20 80 - 

137.579 

0.073 - 

0.071 

0.502 - 

0.507 

243 - 339 2.867 - 

1.975 36 85.203 - 

139.969 

0.084 0.504 - 

0.528 

363 - 453 2.103 - 

1.246 43 80.133 - 
139.943 

0.073 - 
0.071 

0.5 - 
0.508 

397 - 496 1.728 - 
0.781  

 

Conclusion 
 

The study showed how to use MOGA to optimize the turning process. The 

findings suggest that MOGA can yield optimal process parameters and may 
be used to successfully optimize turning, demonstrating that MOGA is a 

beneficial optimization tool. The following conclusions may be taken from 

the optimization conducted on the turning machining process using MOGA: 
i. Due to the contradiction between surface roughness and temperature 

rise and the machining output, MOGA was able to determine a trade-

off between these two objective functions by identifying a combination 
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of feed rate, cutting speed, and depth of cut that satisfied both objective 
functions. 

ii. According to the results, the feed rate, cutting speed, and depth of cut 

are all significant causes of temperature rise and surface roughness. 
iii. As the cutting speed increases, surface roughness decreases while the 

temperature rises. 

iv. The temperature is improved by raising the feed rate, while surface 
roughness is greatly reduced when the feed rate is increased at any 

cutting speed.  

v. The temperature is going to increase as the depth of the cut increases, 
and the surface roughness value will begin to rise as well. 

vi. Although the surface roughness decreases as the hardness increases, 

the temperature rises as the hardness increases. 
vii. When the cutting parameters are 80 m/min, 0.071 mm/rev, and 0.5 mm 

for cutting speed, feed rate, and depth of cut for hardness 20 HRC, the 

lowest temperature rise that can be achieved using this method is 
243.333 °C. Accordingly, it was found that employing MOGA to 

optimize the machining settings for 20 HRC has improved the 

temperature rise by about 10.2% and surface roughness by about 20%. 
viii. Meanwhile, when the cutting speed, feed rate, and depth of cut lowest 

surface roughness measured for hardness 36 HRC was 1.246 µm. The 

values are 85.023 m/min, 0.084 mm/rev, and 0.504 mm, respectively. 
363.071 °C is the lowest temperature rise that can be produced using 

these combined parameters. Both temperature rise and surface 

roughness have increased by 34% as a result of the optimization for 36 
HRC. 

ix. The lowest temperature rise possible with this method is 397.393 °C 

when the cutting parameters are 80.133 m/min, 0.073 mm/rev, and 
0.501 mm for cutting speed, feed rate, and depth of cut with hardness 

43 HRC. The lowest surface roughness that has been identified is 0.781 

µm. By optimizing the machining parameters for 43HRC, the 
temperature increase has improved by 34% and the surface roughness 

has improved by 4%. 
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