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ABSTRACT 

  

Improving the mechanical integrity of the dental implantation through optimal 

stress distribution between the implant and the surrounding bone has reduced 

the risk of bone injury and implant loosening risk. Inversely, the clinical failure 

of implantation will result in the formation of microcracks in the alveolar bone. 

The uncertainty of stress interaction intensity between microcracks has been 

an unsolved issue regarding the load transfer between the implant and alveolar 

bone. This study investigates the magnitude of stress shielding and stress 

amplification to explain the behaviour of double edge (DE) microcracks that 

are identically formed due to various stability conditions of implantation under 

occlusal loading. A series of finite element modelling have been conducted to 

simulate the stress shielding and stress amplification behaviour based on the 

displacement extrapolation method (DEM) and contour integral analysis. The 

occlusal loading schemes are translated into Mode I, Mode II and Mixed-mode 

loading. The presented DE models have demonstrated the transition behaviour 

of DE parallel microcracks into a single edge (SE) crack basic behaviour, 

where the crack unification limit (CUL) and crack interaction limit (CIL) are 

identified at lower and a higher rates of a/W. The occlusal loading has shown 

significant influence on the intensity of stress shielding and stress 

amplification behaviour in a form of DE-SE microcracks interaction for  

Mode I and Mixed-mode occlusal loading. 

mailto:*aliazain@unimap.edu.my


N. A. Md Zain et al. 

 

124 

Keywords: Stress Shielding; Stress Amplification; Finite Element; Bone-

Implant Interaction 

 

 

Introduction 
 

The anchoring stability of dental implantation will lead to better 

osseointegration and bone healing. The initial mechanical engagement 

between the implant and the surrounding bone towards the implant provided 

primary implant stability, which is commonly viewed as an indicator of good 

osseointegration [1]. Primary implant stability was gradually replaced by 

secondary implant stability, which was obtained through new bone creation, 

bone apposition, and implant-bone interface remodelling [2]. However, the 

primary stability stage is affected by the quality and density of bone, the 

properties of the dental implant surface and the surgical approach. In most 

cases, dental implant failure was caused by an unstable dental implant fixation. 

Metal implant failure can be triggered by a mixture of factors, including the 

metal's material qualities (e.g., high stiffness, high corrosion rate, and toxicity) 

or the bone's exposure to infected metal implants (i.e., infection) [3]. In 

addition, the implantation loading method resulted in complicated stress 

shielding and stress concentration in most cases. Numerous factors contribute 

to the success of dental implantations. The stress distribution at the bone-

implant interface is one of the critical issues. Some compressive pressures are 

required at the interface to induce osteointegration. However, the excessive 

stress will result in bone resorption which also caused implant failure [4]. 

Stiff implants alter the distribution of forces in the attached bone. The 

implant may act as a load shield, concentrating forces in different areas of the 

surrounding bones (e.g., at the site of fixation hardware screws). Assume that 

stress-shielding minimises the previously seen load in the vicinity of the 

implant. In that instance, those areas may remodel in response, decreasing total 

bone tissue volume and density (osteopenia). This insulated bone will shrink 

in size (external remodelling) and become more porous (internal remodelling), 

weakening it. Furthermore, if stress is focused on parts of the bone that have 

not previously been subjected to significant loads, the bone can be damaged, 

resulting in a fracture. This happens when implants constantly transmit too 

much load to previously under fewer strain regions. In the mechanism of 

implant-bone load transfer, various studies highlighted the load transfer is 

mostly transferred to the cortical bone rather than trabecular bone [5]–[7] In 

cortical bone fracture, the magnitude and direction of the force acting on the 

implant and the contour shape of the implant are critical factors along with the 

bone-implant contact and bone-implant interface [5] Indeed, the load transfer 

due to applied occlusal force is complicated due to loading morphology in the 

cortical and trabecular bone along with the bone-implant interface. Therefore, 

this study was to investigate the cortical bone fracture behaviour based on the 
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cortical bone fracture evidence at the apical region of an implant-bone system 

subjected to an occlusal loading scheme. The research hypothesis was that the 

microcracks formation initiated by various acting forces and load transfer 

increases or decreases the stress interaction intensity, thus increasing the 

failure probability through stress shielding or stress amplification. Numerous 

variables affect implant stability at the bone-implant interface, including the 

kind of loading, surface structure, the quantity of surrounding bone, material 

qualities, and implant design [8]. Consequently, the focus of this study was to 

examine the effects of stress shielding and stress amplification on the stability 

of bone-implant contact. The structure of the implants, the distribution of the 

interface stress, and the combination mode of the interface are the primary 

variables contributing to the stability of implants. Crucially, the load should be 

controlled to avoid surpassing the implant's physiological tolerance, as 

overloading might result in bone resorption or fatigue failure. Underloading, 

on the other hand, may result in disuse atrophy and consequent bone loss [9]. 

Failures of dental implant placement contribute to fracture and failure 

caused by interacting cracks. Multiple stress concentration features, including 

notches, holes, corners, and bends, are incorporated into the design of 

biomechanical structures and components, which affect the implantation 

procedures. Multiple stress riser points exist at each point of stress 

concentration where the field of stress is most concentrated. Under multiple 

modes of loading and environmental effect, the interaction between 

concentrated stress and multiple stress risers tends to form multiple cracks in 

various orientations before the cracks propagate along different paths to 

coalescence, overlapping, branching, and finally fracture in a brittle manner. 

Previous studies have shown that there have been numerous disastrous failures 

because of crack interaction brought from the multiple stress riser point [10]– 

[12]. Thus, the cases from past studies demonstrated the significance and 

importance of crack interaction investigation to prevent implantation failures.  

In this study, the established approach is addressed to the equality of two cracks 

to single crack standards in the fitness of service (FFS) code based on the crack 

interaction limit (CIL) aspects and crack unification limit (CUL) between the 

double parallel edge cracks in the developed finite element model. Common 

characteristics of the formation of two offset cracks include a sequence in 

which approaching crack tips frequently deviate to some degree from their 

former courses and propagate beyond one another before turning towards the 

opposite crack and merging with it. The interaction zone and coalescence 

conditions derived by Kitagawa et al. considered the changes in the stress 

intensity variables caused by the formation of a nearby fracture [13]-[14]. The 

SIF value of the nearest tips may dramatically increase when two cracks with 

a close lateral gap. Consequently, the stress interaction at the interacting crack 

points may be amplified, have no effect, or be reduced due to the shielding 

effect when compared to that of an isolated crack. Thus, the variation and the 

intersection of the stress interaction between the two parallel crack is the CUL 
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and CIL points, where the behaviour of two parallel cracks are merged into a 

single crack behaviour. 

 

 

Materials and Models 
 
Based on the transformation of clinical fracture [6], as shown in Figure 1 and 

alveolar bone fracture studies. The geometry of bone is investigated infinite 

continuum body and the interaction of microcracks is based on the Kachanov 

model. The geometry of the double edge (DE) cracks in the finite body element 

is constructed by nine models with nine different crack-to-width (a/W) ratios 

for Mode I, Mode II, and Mixed Mode analysis. It is generated in this section 

by the transition from the physical model of the actual fracture [15] from the 

mandibular clinical cases to the continuum body. For the double edge 

microcrack with the existence of the lower crack tip, c1, upper crack tip, c2, 

lower crack tip, ct1 and upper crack tip, ct2 in the human mandibular bone, a 

two-dimensional (2D) geometrical design of the finite element (FE) model is 

constructed, which was generated using ANSYS Parametric Design Language 

(APDL) macro coding based on the Kachanov theory of interaction. The 

interaction behaviour between the two microcracks is examined by the 

categories of the weak and strong interaction (shielding and amplification 

conditions) subjected to FFS geometrical design for the 2D continuum body. 

A similar method has been conducted in recent literature done by Imène 

Hebbar et. al [16]. 

There are four parameters design the geometry of the alveolar bone:  

the width of the continuum model W (1 mm), the upper crack length, 

 a1 ( 0.125 0.5mm a mm  ), the lower crack length a2 (0.125 mm), and the 

crack interval,b ( 0.1 0.3mm a mm  ) between the double edge crack, b. For 

the alveolar cancellous bone tissue in the finite element model, the material 

properties are as follows: Young Modulus (1 GPa), Poisson's Ratio (0.25), and 

Occlusal Pressure (11 Pa). Three different loading modes—Mode I, Mode II, 

and Mixed-mode have been used. 
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Figure 1: Transformation of the clinical fracture [15] to finite continuum 

body 

 

Research design and material properties 
A simplified representation of the bone's linear elastic material property based 

on a prior study [15]. The transformation from the clinical fracture to the finite 

continuum body generated using computational approaches is illustrated in  

Figure 1. Under 11 N tensile loading of occlusal force [7], both single edge and 

multiple edge cracks are modeled in the finite body [6], resulting in a force 

concentration around the crack points. The numerical model's dimension of is 

built to reflect the stress transfer between the dental implant and the 

microcracks behaviour found in several implant thread locations (cervical, 

central, and apical), a manner similar to that used in earlier studies[18]. The 

finite element's boundary condition is kept constant at the bottom line of the 

finite element model and the bottom left corner node The structural analysis 

performed with APDL is based on the data from finite element FE modelling. 

Table 1 shows the geometrical model points (A–H) of the implant geometry 

specified in (x, y) coordinate system. 

In this study, crack interaction is limited to non-propagating cracks, 

where the shielding effect plays a significant role in promoting fracture and 

failure. The model included the relative position of two parallel edge cracks 

when the crack interval and crack-to-width ratio are varied. In addition, the 

stress intensity factor (SIF) and elastic crack interaction factor values are 

compared to the related FFS rules and numerical data from the literature. The 

SIF is limited to linear elastic problems involving a homogenous, isotropic 

material near the crack site.  

The SIF is calculated using a quadratic isoparametric FE to create a 

single element at the fracture tip. A quarter-point singular element or eight-
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node collapsed quadrilateral element invented by Henshell and Shaw [19] is 

employed in situations where it offers specific advantages over the other 

quarter-point element in terms of time, meshing, and re-mesh. The singularity 

is obtained by relocating the mid-side node four points closer to the crack tip. 

To compute the SIF, we assumed rigid body motion and constant strain modes 

for the elements. Murakami [20] addressed the accuracy of this special element 

by enclosing the crack tip nodal point in several particular elements and 

demonstrating that the size, number, and compatibility of certain elements had 

a significant effect on accuracy. 

 

Table 1:  Coordinates of the implant geometry's specific points 

 x y 

A 0 0 

B W 0 

C W W 

D 0 W 

E 0  

F 0 a  

G 0 0.25 

H 0.5 0.25 

 

 
 

Figure 2: The quarter-point singular element introduced by Barsoum [21] 

Figure 2 shows the Barsoum singularity element [21] that used to 

govern Equation (3) and Equation (4), known as the Displacement 

Extrapolation Method (DEM). The DEM is used to calculate the SIFs (KI and 

KII) in a mixed-mode problem based on the displacement of the crack side 

nodes of the singular element. 

 



Stress interaction behaviour in alveolar cortical bone fracture 

 

129 

( ) ( )2

2 2 1 11 2
4 4I B C B CK V V V V

 
 +

= − − −  l
 

 
(1) 

 

( ) ( )2

2 2 1 11 2
4 4II B C B CK V U V U

 
 +

= − − −  l
 

 

(2) 

 

where  is the shear modulus equals to ( )2 1
,E

+
E is the Young's modulus,   is 

the Poisson's ratio, ( )3 4 = − for plane strain while 
( )3 4

1






−

+
= for plane 

stress, U is for sliding displacement and V is for opening displacement 

located at the crack tip of the model. The DEM method has been widely used 

in FE analysis due to its simplicity, and the method reduce storage space and 

calculation time. However, this method has limitations when the SIF accuracy 

is highly dependent on the grid element refinement, which is supported by Liao 

in recent studies [22] Nevertheless, according to Brocks et al. [23], the DEM 

method is unreliable in modern research because it relies on the singularity 

element, which yields significantly more precise results. The CINT method, on 

the other hand, produces consistent and accurate results even for coarse meshes 

and does not require the arrangement of singularity elements. Unfortunately, 

the CINT is unable to accurately determine the crack tip opening displacement 

(CTOD) or stresses at the crack tip for stationary cracks [23]. This study uses 

both DEM and CINT to determine the most accurate and reliable strategy for 

the established finite element model.  

 

 
 

Figure 3: Geometrical model and meshing scheme 

The mesh that encloses the interacting fractures is separated into global 

and local mesh zones. Both zones are meshed using the eight-node 

isoparametric quadrilateral element that serves as the foundation for the two-

dimensional plate element, as depicted in  
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Figure 3. PLANE 42, an ANSYS solid element, was employed with 

plane strain assumption. This assumption was necessary due to the enormous 

number of elements needed to solve rapid stress changes in precise detail. The 

element size is determined by their distance from the crack tip surface, as 

shown in  

Figure 3. The geometry was discretized using two-dimensional 

isoparametric elements with eight nodes, quadratic shape functions, and plane 

strain behaviour. Utilizing degenerated components of the same type, the crack 

tip has been provided with greater precision. In particular, the quarter-point 

position is occupied by the mid-side node of the two sides closest to the crack 

tip node. This element type is also known as the quarter-point element. 

 

Sensitivity analysis and theoretical validation 

Convergence meshing is used to choose the optimal meshing scheme around 

the crack tip at the local concentration keypoint, resulting in precise numerical 

results for the SIFs. The optimal value for the meshing element is determined 

by the number of wedges surrounding the crack tip element (NTHET). NTHET 

is varied between 6 and 24, and the sensitivity analysis of the simulation results 

is based on converged element numbers, which improve model accuracy. 

 
 

Figure 4: Meshing scheme sensitivity analysis based on the NTHET values 

Figure 4 illustrates the variance in the meshing strategy for the optimum 

values based on the NTHET values. As can be observed, the SIF value 

increases with increasing NTHET values until it hits a plateau state at NTHET 

= 20, indicating the meshing scheme's optimal value. Thus, the number of 
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wedge elements and meshing areas adopted for this research will be 

implemented as depicted in  

Figure 3. SIF is limited to linear elastic fracture mechanics (LEFM) 

behaviour in a homogenous, isotropic material surrounding the crack tip zone. 

A few analytical SIF from previous researchers by Brown & Srawley [24], 

Tada [25], and Gross & Brown [26] have offered a recommended reference 

based on analytical data from previous investigations.  

The large discrepancy in the SIF value between the numerical and analytical 

data is illustrated in Figure 5. As can be seen, the numbers for the displacement 

extrapolation method (DEM) and contour integral (CINT) method, are nearly 

identical, except for a minor percentage difference for the DEM and CINT. 

Thus, the numerical model built in this study is deemed appropriate to analyse 

the stress behaviour of double microcracks under various crack length to width 

ratio situations. The CINT approach is more precise than the DEM method. 

Thus, the CINT technique is employed in this analysis to compute SIFs. 
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Figure 5: Comparison of the numerical stress intensity factor with the 

analytical data 

 

Numerical result and discussion 

The relationship between a parallel microcrack (upper crack tip surface) and a 

primary crack (lower crack tip surface) under Mode I, Mode II, and Mixed-

mode loadings are considered. The SIF is limited to LEFM behaviour in the 

presence of a homogenous, isotropic material surrounding the crack tip zone. 

Table 2 shows the percentage error for the numerical model of double 

edge microcracks. According to the acquired results, the percentage error for 
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all SIF readings was less than 0.03 percent, with an average error of 0.02 

percent.  

 

 

 

Table 2: Percentage error of the developed numerical model measured from 

the previous analytical data 

a/W SIF (CINT) SIF(BS) % SIF(BS) 

0.125 7.4731 7.6644 0.026 

0.175 9.7137 9.7644 0.005 

0.225 12.1630 12.0630 0.008 

0.275 14.9530 14.6736 0.019 

0.325 18.2020 17.7343 0.026 

0.375 22.0770 21.4372 0.029 

0.425 26.7760 26.0473 0.027 

0.475 32.6130 31.9166 0.021 

0.500 36.0950 35.4601 0.018 

Average error (%) 0.020 

 

For validation reasons, the findings for all numerical readings are 

collected from a single edge crack numerical model and compared to the 

preceding analytical model (Brown & Srawley) [26]. The SIF of the analytical 

model used is derived from the following equation: 

 

( ) ( ) ( ) ( )
2 3 4

1.12 0.23 10.6 21.7 30.4a a a a
BS W W W W

K a 
 

= − + − + 
 

 (3) 

( )1,BS BSK a f =  (4) 

where is the pressure given to the model and 
1,BSf  is the shape correction 

factor for the single edge crack for the FE model. The results indicate that the 

proposed numerical model is accurate and validated for application to the 

model of double edge cracks. 

The SIFs are shown for the CINT to illustrate the effect of the 

microcrack crack length to width ratio (a/W) and crack interval, b on the 

primary microcrack interaction. A similar finding was found in recent studies 

where the SIF varies along the a/W and b magnitude [27]-[28]. Numerical 

findings are presented for three loading modes: Mode I, Mode II, and Mixed-

mode loading. The SIF values in Table 3 are for the upper and lower crack tips, 

respectively. The Ctref is extracted from the single edge crack model and 

compared to the double edge crack model to determine the amplification and 

shielding behaviour of the FE model. The upper crack tip has a varied crack 

length between 0.125 0.5a
W  length and the stress interaction condition 
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behaviour between the two parallel crack tips. Due to the presence of a 

microcrack, the stress intensity factor at the tip of the main crack may be 

enhanced ( 1

_

, 1,ct

ct ref

SIF

SIF
 amplification) or suppressed ( 1

_

1,ct

ct ref

SIF

SIF
 shielding).  

The transition from stress shielding to stress amplification happens 

particularly at the crack intervals b = 0.1 mm and b = 0.15 mm for Mode I 

loading. The interaction between the two crack tips exhibits the same 

amplification behaviour when the crack interval is greater than 0.15 mm. The 

transition between the two stress behaviours occurs most significantly at  

a/W = 0.125 mm, 0.475 mm, and 0.5 mm, respectively. Interestingly, at 

1

_

1,ct

ct ref

SIF

SIF
= two parallel edge cracks without interaction occurred, which is 

equivalent to a single independent crack. This stage allows for the 

determination of the crack interaction limit (CIL). This occurs as the stress 

behaviour transitions between the shielding and amplification phases. 

However, there is no transition between the stress behaviour phases for Mode 

II loading conditions. For all crack length and crack interval configurations, 

the two parallel edge cracks display solely the stress amplification stress 

behaviour. According to the numerical results in Mode I, the two parallel edge 

microcrack interactions exhibit two distinct behaviours (stress shielding and 

stress amplification).  

 

Table 3: The stress condition in the double edge crack for Mode I loading 

condition 

 

a/W 

B = 0.1 

SIF, ct1 SIF, ct2 
SIF, 

ctref 

SIF,  

ct1 /ctref 
Stress condition 

0.125 6.623 5.428 7.4731 0.886 Shielding 

0.175 10.680 2.229 9.7137 1.100 Amplification 

0.225 13.836 0.118 12.163 1.138 Amplification 

0.275 16.883 1.363 14.953 1.129 Amplification 

0.325 20.109 2.102 18.202 1.105 Amplification 

0.375 23.471 0.610 22.077 1.063 Amplification 

0.425 26.922 0.730 26.776 1.005 Amplification 

0.475 30.374 0.809 32.613 0.931 Shielding 

0.5 32.054 0.844 36.095 0.888 Shielding 

 B = 0.15 

0.125 7.050 5.712 7.4731 0.943 Shielding 

0.175 10.778 3.521 9.7137 1.110 Amplification 

0.225 14.222 2.577 12.163 1.169 Amplification 

0.275 17.584 1.290 14.953 1.176 Amplification 

0.325 21.095 0.571 18.202 1.159 Amplification 

0.375 24.756 0.252 22.077 1.121 Amplification 
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0.425 28.548 0.165 26.776 1.066 Amplification 

0.475 32.393 0.210 32.613 0.993 Shielding 

0.5 34.289 0.262 36.095 0.950 Shielding 

 B = 0.2 

0.125 7.559 5.969 7.4731 1.011 Amplification 

0.175 11.215 5.463 9.7137 1.155 Amplification 

0.225 14.934 3.702 12.163 1.228 Amplification 

0.275 18.711 2.220 14.953 1.251 Amplification 

0.325 22.675 1.178 18.202 1.246 Amplification 

0.375 26.829 0.746 22.077 1.215 Amplification 

0.425 31.172 0.469 26.776 1.164 Amplification 

0.475 35.647 0.393 32.613 1.093 Amplification 

0.5 37.891 0.407 36.095 1.050 Amplification 

 B = 0.25 

0.125 8.153 6.803 7.4731 1.091 Amplification 

0.175 11.998 5.578 9.7137 1.605 Amplification 

0.225 16.124 4.111 12.163 2.158 Amplification 

0.275 20.499 2.699 14.953 2.743 Amplification 

0.325 25.144 1.540 18.202 3.365 Amplification 

0.375 30.090 0.690 22.077 4.026 Amplification 

0.425 35.326 0.117 26.776 4.727 Amplification 

0.475 40.796 0.237 32.613 5.459 Amplification 

0.5 43.586 0.350 36.095 5.832 Amplification 

 B = 0.3 

0.125 9.267 6.479 7.4731 1.240 Amplification 

0.175 13.544 6.572 9.7137 1.812 Amplification 

0.225 18.352 5.323 12.163 2.456 Amplification 

0.275 23.627 4.012 14.953 3.162 Amplification 

0.325 29.393 2.821 18.202 3.933 Amplification 

0.375 35.597 1.855 22.077 4.763 Amplification 

0.425 42.254 1.140 26.776 5.654 Amplification 

0.475 49.345 0.917 32.613 6.603 Amplification 

0.5 53.021 0.794 36.095 7.095 Amplification 

 

Table 4: The stress condition in the double edge crack for Mode II loading 

condition 

 

a/W 

 B = 0.1 

SIF, 

ct1 
SIF, ct2 SIF, ctref 

SIF,  

ct1 /ctref 

Stress 

condition 

0.125 0.811 0.437 7.77E-03 1.04E+02 Amplification 

0.175 1.050 0.174 2.85E-07 3.68E+06 Amplification 

0.225 1.175 0.067 5.86E-07 2.01E+06 Amplification 
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0.275 1.292 0.033 3.56E-07 3.63E+06 Amplification 

0.325 1.425 0.024 7.13E-07 2.00E+06 Amplification 

0.375 1.581 0.022 9.08E-08 1.74E+07 Amplification 

0.425 1.765 0.022 8.06E-08 2.19E+07 Amplification 

0.475 1.991 0.022 5.59E-07 3.56E+06 Amplification 

0.5 2.125 0.023 7.9E-07 2.69E+06 Amplification 

 B = 0.15 

0.125 0.638 0.408 7.77E-03 8.21E+01 Amplification 

0.175 0.807 0.293 2.85E-07 2.83E+06 Amplification 

0.225 0.916 0.213 5.86E-07 1.56E+06 Amplification 

0.275 1.005 0.173 3.56E-07 2.83E+06 Amplification 

0.325 1.002 0.227 7.13E-07 1.41E+06 Amplification 

0.375 1.205 0.146 9.08E-08 1.33E+07 Amplification 

0.425 1.437 0.088 8.06E-08 1.78E+07 Amplification 

0.475 1.490 0.138 5.59E-07 2.67E+06 Amplification 

0.5 1.583 0.138 7.9E-07 2.01E+06 Amplification 

 B = 0.2 

0.125 0.463 0.435 7.77E-03 5.96E+01 Amplification 

0.175 0.807 0.673 2.85E-07 2.83E+06 Amplification 

0.225 0.689 0.361 5.86E-07 1.18E+06 Amplification 

0.275 0.766 0.337 3.56E-07 2.15E+06 Amplification 

0.325 0.838 0.321 7.13E-07 1.18E+06 Amplification 

0.375 0.916 0.311 9.08E-08 1.01E+07 Amplification 

0.425 1.004 0.305 8.06E-08 1.25E+07 Amplification 

0.475 1.111 0.301 5.59E-07 1.99E+06 Amplification 

0.5 1.173 0.300 7.9E-07 1.49E+06 Amplification 

 B = 0.25 

0.125 0.376 0.315 7.77E-03 4.84E+01 Amplification 

0.175 0.451 0.299 2.85E-07 1.58E+06 Amplification 

0.225 0.514 0.283 5.86E-07 8.78E+05 Amplification 

0.275 0.569 0.270 3.56E-07 1.60E+06 Amplification 

0.325 0.620 0.260 7.13E-07 8.69E+05 Amplification 

0.375 0.672 0.253 9.08E-08 7.40E+06 Amplification 

0.425 0.728 0.248 8.06E-08 9.04E+06 Amplification 

0.475 0.794 0.245 5.59E-07 1.42E+06 Amplification 

0.5 0.832 0.243 7.9E-07 1.05E+06 Amplification 

 B = 0.3 

0.125 0.139 0.600 7.77E-03 1.79E+01 Amplification 

0.175 0.251 0.621 2.85E-07 8.79E+05 Amplification 

0.225 0.344 0.580 5.86E-07 5.87E+05 Amplification 

0.275 0.422 0.639 3.56E-07 1.19E+06 Amplification 

0.325 0.490 0.643 7.13E-07 6.87E+05 Amplification 

0.375 0.552 0.640 9.08E-08 6.08E+06 Amplification 

0.425 0.610 0.636 8.06E-08 7.57E+06 Amplification 
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0.475 0.669 0.632 5.59E-07 1.20E+06 Amplification 

0.5 0.700 0.630 7.9E-07 8.87E+05 Amplification 

 

Table 5: The stress condition in the double edge crack for Mixed-mode 

loading condition 

 

a/W 

B = 0.1 

SIF, ct1 SIF, ct2 
SIF, 

ctref 

SIF,  

ct1 /ctref 
Stress condition 

0.125 9.403 7.587 7.7944 1.206 Amplification 

0.175 5.699 13.368 10.288 0.554 Shielding 

0.225 2.411 18.089 13.13 0.184 Shielding 

0.275 0.795 22.706 16.373 0.049 Shielding 

0.325 0.009 27.740 20.112 0.000 Shielding 

0.375 0.418 33.438 24.501 0.017 Shielding 

0.425 0.628 40.028 29.735 0.021 Shielding 

0.475 0.728 47.894 36.207 0.020 Shielding 

0.5 0.751 52.479 40.048 0.019 Shielding 

 B = 0.15 

0.125 7.783 9.754 7.7944 0.999 Shielding 

0.175 12.762 7.213 10.288 1.240 Amplification 

0.225 17.584 4.536 13.13 1.339 Amplification 

0.275 22.402 2.554 16.373 1.368 Amplification 

0.325 27.561 1.297 20.112 1.370 Amplification 

0.375 33.314 0.544 24.501 1.360 Amplification 

0.425 39.909 0.110 29.735 1.342 Amplification 

0.475 47.684 0.125 36.207 1.317 Amplification 

0.5 52.169 0.191 40.048 1.303 Amplification 

 B = 0.2 

0.125 8.158 10.020 7.7944 1.047 Amplification 

0.175 12.779 8.223 10.288 1.242 Amplification 

0.225 17.661 6.092 13.13 1.345 Amplification 

0.275 22.739 4.182 16.373 1.389 Amplification 

0.325 28.178 2.743 20.112 1.401 Amplification 

0.375 34.181 1.760 24.501 1.395 Amplification 

0.425 40.974 1.135 29.735 1.378 Amplification 

0.475 47.684 0.125 36.207 1.317 Amplification 

0.5 52.169 0.191 40.048 1.303 Amplification 

 B = 0.25 

0.125 8.842 10.267 7.7944 1.134 Amplification 

0.175 13.445 8.914 10.288 1.307 Amplification 

0.225 18.559 7.214 13.13 1.414 Amplification 

0.275 24.055 5.513 16.373 1.469 Amplification 
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0.325 30.005 4.068 20.112 1.492 Amplification 

0.375 36.565 2.974 24.501 1.492 Amplification 

0.425 43.887 2.221 29.735 1.476 Amplification 

0.475 52.236 1.754 36.207 1.443 Amplification 

0.5 56.917 1.608 40.048 1.421 Amplification 

 B = 0.3 

0.125 11.4540 9.9379 7.7944 1.470 Amplification 

0.175 14.8486 9.4554 10.288 1.443 Amplification 

0.225 20.5376 8.0727 13.13 1.564 Amplification 

0.275 26.8449 6.5839 16.373 1.640 Amplification 

0.325 33.7886 5.2043 20.112 1.680 Amplification 

0.375 41.4629 4.0727 24.501 1.692 Amplification 

0.425 49.9649 3.2374 29.735 1.680 Amplification 

0.475 59.5026 2.6904 36.207 1.643 Amplification 

0.5 64.7572 2.5145 40.048 1.617 Amplification 

 

For Mixed-mode loading situations, the stress behaviour demonstrates 

a discrete transition state between stress behaviour phases. At 0.15b   mm, 

for instance, the stress interaction behavioural changes from a shielding phase 

to an amplification phase along the variation of a/W in the upper crack tip. At 

the same a/W crack length, the SIF between the upper and lower crack tips is 

nearly identical. For the combination of tensile and shear loading conditions, 

the stress concentration acted on both crack tips is equally balanced (Mixed-

mode loading). In contrast to the SIF at solely tensile (Mode I) and shear 

(Mode II) loading directions, the SIF in the upper and lower crack tip have 

substantial variances at comparable a/W crack lengths. The relationship 

between the crack interval, b, and the crack length, a, also affects the 

interaction between two parallel edge cracks. For instance, if the distance 

between two equal cracks is less than the strength of the cracks, b/a there is a 

strong interaction between them. Secondly, the cracks exhibit a weak 

interaction when the distance between two parallel fractures exceeds the 

primary crack length which agrees with Kachanov’s theory of interaction [29]-

[31]. 

Figure 6 depicts the variation difference between the stress interaction 

behaviour of the amplification and shielding in Mode I and Mixed-mode 

loading schemes. At the closest crack interval between two parallel edge 

cracks, the Mode I interaction begins to exhibit shielding behaviour. As a/W 

increases, the stress interaction increases, and hence, stress amplification 

occurs. As the a/W length approached 0.5 mm, however, the stress interaction 

between the two crack tips diminished and the behaviour reverted to the 

shielding stress behaviour. In contrast, the mixed-mode situation exhibits a 

distinct transition where the stress interaction commences off as an 

amplification stress behaviour and decreases as the a/W grows. 
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(a) b = 0.1 mm 
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(b) b = 0.2 mm 
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(c) b = 0.3 mm 

  
Figure 6: Variation of normalized interaction of the stress intensity factor 

The difference in stress interaction behaviour is due to the effect of the 

difference between the purely tensile load in Mode I and the combination of 

tensile and shear loads in the Mixed-mode loading scheme on the SIF existing 

in both of the crack tips. When the two crack tips are close to each other, there 

is a strong interaction between the two crack tips. Thus, the loading direction 

in the continuum finite element model has a significant effect on the stress 

interaction between the two parallel edge cracks. As the two parallel crack tip 

surfaces grow apart from each other, the stress interaction variation for Mode 

I and Mixed-mode loading conditions is nearly identical. For both loading 

circumstances, the stress interaction between the two crack tips exhibits an 

amplification behaviour. Interestingly, as the a/W rises, the amplification 

behaviour increases as well. However, as a/W approaches 0.3 mm, there is a 

variability in the stress interaction behaviour. Thus, it can be seen that there is 

a significant reduction in the magnitude of the stress interaction between the 

two crack tips at the longer a/W lengths. 

In general, when two cracks are parallel, the longer fracture will 

experience a greater SIF and may serve as a propagation crack site. In the 

parallel crack interaction, when the size of one of the cracks rises, its crack tip 

absorbs more stress while the stress on the other crack tip drops, hence 

amplifying the crack-tip of the longer crack. When the lengths of two cracks 

are identical, the stress or load at the crack points is also same. According to 

previous study, the maximum value of the lateral crack interval, b, required to 

produce coalescence is dependent on the crack length, 2a [14] following: 

 

Amplification region 

Shielding region 
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( )0.14 2h a  (5) 

 

The b/2a ratio between the two parallel crack tips plays a crucial role in 

predicting the stress interaction behaviour between the two parallel crack tips, 

and the similar findings has been reported by previous research [30]. Thus, for 

the analysis of crack interaction in this study, the SIF for the closest tip of two 

parallel cracks in an infinitely elastic solid subjected to a tensile stress is 

utilised.  

The numerical results presented in Table 3-Error! Reference source n

ot found. also demonstrate the prediction pattern for all crack length to width 

ratios and crack intervals for Mode I and Mixed-mode loading conditions. Two 

conditions should be observed in this case. To commence, there is a distinct 

trend of stress shielding to stress amplification transition at the crack interval, 

b = 0.1 mm, under  

Mode I and Mixed-mode loading circumstances. Second, except for the 

Mixed-mode loading at the crack interval, b = 0.3 mm, the stress amplification 

dominated the stress behaviour of all crack interval length configurations. 

Concerning the present interacting shielding factor, which is relevant to the 

energy release rate, there are two situations of interaction that occur: crack 

unification limit (CUL) and crack interaction limit (CIL). 

The variability in the stress shielding factor is illustrated in Figure 7, 

employing Brown & Srawley's reference analytical data [32]. A few interacting 

cracks can be seen. At the higher intersection point of a/W, the two parallel 

edge cracks with no interaction are equivalent to a single independent crack. 

This stage enables the determination of the crack interaction limit (CIL). Two 

cracks are merged into a single crack in the following occurrence, and a strong 

interaction occurs, revealing the crack unification limit (CUL). When parallel 

cracks come into contact, a weak interaction occurs, which explains the CUL 

exists in the lower intersection point of a/W.  
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Figure 7: Variation of the stress shielding factor in (a) Mode I, (b) Mode II 

and (c) Mixed-mode loading at crack interval b= 0.1 mm 

 

Conclusion 
 

This study found that the applied Mode I, Mode II and Mixed mode occlusal 

loading exhibit different magnitudes of stress shielding and stress 

amplification intensity. The transition of the DE microcracks to SE microcrack 

is exist at the different magnitude of crack to width ratio, a/W and crack 

interval, b. It was discovered that as the cracks' interval increases, the shielding 

effect under Mode I occlusal stress transitions to the amplification effect. On 

the other hand, when the fracture interval increases, Mixed-mode occlusal 

Intersection point 
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loading displays the opposite behaviour as the size of the crack gap grows. 

Interestingly, it was discovered that the crack interval did not affect the stress 

shielding behaviour under Mode II loading conditions. Following that, we 

determined the crack interaction limit (CIL) and the crack unification limit 

(CUL). When b and a/W are increased or decreased, the SIF of Mode I and 

Mixed-mode loading conditions is deemed to be more significant than that of 

Mode II loading conditions. CIL and CUL are accurate representations of the 

numerical model that defines the merging cracks as a single crack. 
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